37 research outputs found

    Olive oil industry by-products. Effects of a polyphenol-rich extract on the metabolome and response to inflammation in cultured intestinal cell

    Get PDF
    Over the past years, researchers and food manufacturers have become increasingly interested in olive polyphenols due to the recognition of their biological properties and probable role in the prevention of various diseases such as inflammatory bowel disease. Olive pomace, one of the main by-products of olive oil production, is a potential low-cost, phenol-rich ingredient for the formulation of functional food. In this study, the aqueous extract of olive pomace was characterized and used to supplement human intestinal cell in culture (Caco-2). The effect on the cell metabolome and the anti-inflammatory potential were then evaluated. Modification in the metabolome induced by supplementation clearly evidenced a metabolic shift toward a “glucose saving/accumulation” strategy that could have a role in maintaining anorexigenic hormone secretion and could explain the reported appetite-suppressing effect of the administration of polyphenol-rich food. In both basal and inflamed condition, supplementation significantly reduced the secretion of the main pro-inflammatory cytokine, IL-8. Thus, our data confirm the therapeutic potential of polyphenols, and specifically of olive pomace in intestinal bowel diseases. Although intervention studies are needed to confirm the clinical significance of our findings, the herein reported results pave the road for exploitation of olive pomace in the formulation of new, value-added foods. In addition, the application of a foodomics approach allowed observing a not hypothesized modulation of glucose metabolism

    Multidimensional characterization, Landau levels and Density of States in epitaxial graphene grown on SiC substrates

    Get PDF
    Using high-temperature annealing conditions with a graphite cap covering the C-face of, both, on axis and 8° off-axis 4H-SiC samples, large and homogeneous single epitaxial graphene layers have been grown. Raman spectroscopy shows evidence of the almost free-standing character of these monolayer graphene sheets, which was confirmed by magneto-transport measurements. On the best samples, we find a moderate p-type doping, a high-carrier mobility and resolve the half-integer quantum Hall effect typical of high-quality graphene samples. A rough estimation of the density of states is given from temperature measurements

    Ethanol-Dependent Synthesis of Salsolinol in the Posterior Ventral Tegmental Area as Key Mechanism of Ethanol’s Action on Mesolimbic Dopamine

    Get PDF
    Abnormal consumption of ethanol, the ingredient responsible for alcoholic drinks’ addictive liability, causes millions of deaths yearly. Ethanol’s addictive potential is triggered through activation, by a still unknown mechanism, of the mesolimbic dopamine (DA) system, part of a key motivation circuit, DA neurons in the posterior ventral tegmental area (pVTA) projecting to the ipsilateral nucleus accumbens shell (AcbSh). The present in vivo brain microdialysis study, in dually-implanted rats with one probe in the pVTA and another in the ipsilateral or contralateral AcbSh, demonstrates this mechanism. As a consequence of the oral administration of a pharmacologically relevant dose of ethanol, we simultaneously detect a) in the pVTA, a substance, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), untraceable under control conditions, product of condensation between DA and ethanol’s first by-product, acetaldehyde; and b) in the AcbSh, a significant increase of DA release. Moreover, such newly generated salsolinol in the pVTA is responsible for increasing AcbSh DA release via m opioid receptor (mOR) stimulation. In fact, inhibition of salsolinol’s generation in the pVTA or blockade of pVTA mORs prevents ethanol-increased ipsilateral, but not contralateral, AcbSh DA release. This evidence discloses the long-sought key mechanism of ethanol’s addictive potential and suggests the grounds for developing preventive and therapeutic strategies against abnormal consumption

    Single Crystal Organic Field-effect Transistors Based on Dinaphthothienothiophene Isomers

    No full text

    Flexible Organic Thin-Film Transistors for pH Monitoring

    No full text

    When a Neonate Is Born, So Is a Microbiota

    No full text
    In recent years, the role of human microbiota as a short- and long-term health promoter and modulator has been affirmed and progressively strengthened. In the course of one’s life, each subject is colonized by a great number of bacteria, which constitute its specific and individual microbiota. Human bacterial colonization starts during fetal life, in opposition to the previous paradigm of the “sterile womb”. Placenta, amniotic fluid, cord blood and fetal tissues each have their own specific microbiota, influenced by maternal health and habits and having a decisive influence on pregnancy outcome and offspring outcome. The maternal microbiota, especially that colonizing the genital system, starts to influence the outcome of pregnancy already before conception, modulating fertility and the success rate of fertilization, even in the case of assisted reproduction techniques. During the perinatal period, neonatal microbiota seems influenced by delivery mode, drug administration and many other conditions. Special attention must be reserved for early neonatal nutrition, because breastfeeding allows the transmission of a specific and unique lactobiome able to modulate and positively affect the neonatal gut microbiota. Our narrative review aims to investigate the currently identified pre- and peri-natal factors influencing neonatal microbiota, before conception, during pregnancy, pre- and post-delivery, since the early microbiota influences the whole life of each subject

    Gas chromatography-mass spectrometry metabolomics of goat milk with different polymorphism at the α<sub>S1</sub>-casein genotype locus

    No full text
    Hyphenated gas chromatography-mass spectrometry (GC-MS) and multivariate data analysis techniques were used to uncover milk metabolite differences in different αS1-casein genotypes of goats. By a discriminant GC-MS metabolomics approach, we characterized milk polar metabolites of 28 goats. Animals were selected on the basis of their genotypes as 7 goats classified heterozygous for weak or null alleles, 5 for the genotype EE, 9 for the genotypes AE and BE, and finally 7 for the strong genotype AA. Low molecular weight polar metabolite profile was tightly related to the different goat genotypes, milk production, and protein levels. Results of multivariate statistical analysis of GC-MS data demonstrate that different heterozygous and homozygous genotypes expressed different metabolites such as citric and aconitic acid for the strong allele class with different sugars and polyols for the weak class
    corecore