1,270 research outputs found

    Professionals

    Get PDF

    Channel Characterization for Chip-scale Wireless Communications within Computing Packages

    Get PDF
    Wireless Network-on-Chip (WNoC) appears as a promising alternative to conventional interconnect fabrics for chip-scale communications. WNoC takes advantage of an overlaid network composed by a set of millimeter-wave antennas to reduce latency and increase throughput in the communication between cores. Similarly, wireless inter-chip communication has been also proposed to improve the information transfer between processors, memory, and accelerators in multi-chip settings. However, the wireless channel remains largely unknown in both scenarios, especially in the presence of realistic chip packages. This work addresses the issue by accurately modeling flip-chip packages and investigating the propagation both its interior and its surroundings. Through parametric studies, package configurations that minimize path loss are obtained and the trade-offs observed when applying such optimizations are discussed. Single-chip and multi-chip architectures are compared in terms of the path loss exponent, confirming that the amount of bulk silicon found in the pathway between transmitter and receiver is the main determinant of losses.Comment: To be presented 12th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2018); Torino, Italy; October 201

    Fault Tolerance in Programmable Metasurfaces: The Beam Steering Case

    Get PDF
    Metasurfaces, the two-dimensional counterpart of metamaterials, have caught great attention thanks to their powerful control over electromagnetic waves. Recent times have seen the emergence of a variety of metasurfaces exhibiting not only countless functionalities, but also a reconfigurable or even programmable response. Reconfigurability, however, entails the integration of tuning and control circuits within the metasurface structure and, as this new paradigm moves forward, new reliability challenges may arise. This paper examines, for the first time, the reliability problem in programmable metamaterials by proposing an error model and a general methodology for error analysis. To derive the error model, the causes and potential impact of faults are identified and discussed qualitatively. The methodology is presented and instantiated for beam steering, which constitutes a relevant example for programmable metasurfaces. Results show that performance degradation depends on the type of error and its spatial distribution and that, in beam steering, error rates over 10% can still be considered acceptable
    corecore