7,775 research outputs found

    Quasi-Periodic Oscillations and energy spectra from the two brightest Ultra-Luminous X-ray sources in M82

    Full text link
    Ultra-Luminous X-ray sources are thought to be accreting black holes that might host Intermediate Mass Black Holes (IMBH), proposed to exist by theoretical studies, even though a firm detection (as a class) is still missing. The brightest ULX in M82 (M82 X-1) is probably one of the best candidates to host an IMBH. In this work we analyzed the data of the recent release of observations obtained from M82 X-1 taken by XMM-Newton. We performed a study of the timing and spectral properties of the source. We report on the detection of (46+-2) mHz Quasi-Periodic Oscillations (QPOs) in the power density spectra of two observations. A comparison of the frequency of these high-frequency QPOs with previous detections supports the 1:2:3 frequency distribution as suggested in other studies. We discuss the implications if the (46+-2) mHz QPO detected in M82 X-1 is the fundamental harmonic, in analogy with the High-Frequency QPOs observed in black hole binaries. For one of the observations we have detected for the first time a QPO at 8 mHz (albeit at a low significance), that coincides with a hardening of the spectrum. We suggest that the QPO is a milli-hertz QPO originating from the close-by transient ULX M82 X-2, with analogies to the Low-Frequency QPOs observed in black hole binaries.Comment: 9 pages (with 4 figures and 4 tables). Accepted for publication in MNRAS (26/09/13

    Ultraluminous X-ray sources with flat-topped noise and QPO

    Full text link
    We analyzed the X-ray power density spectra of five ultraluminous X-ray sources (ULXs) NGC5408 X-1, NGC6946 X-1, M82 X-1, NGC1313 X-1 and IC342 X-1 that are the only ULXs which display both flat-topped noise (FTN) and quasi-periodic oscillations (QPO). We studied the QPO frequencies, fractional root-mean-square (rms) variability, X-ray luminosity and spectral hardness. We found that the level of FTN is anti-correlated with the QPO frequency. As the frequency of the QPO and brightness of the sources increase, their fractional variability decreases. We propose a simple interpretation using the spherizarion radius, viscosity time and α\alpha-parameter as basic properties of these systems. The main physical driver of the observed variability is the mass accretion rate which varies >3 between different observations of the same source. As the accretion rate decreases the spherization radius reduces and the FTN plus the QPO move toward higher frequencies resulting in a decrease of the fractional rms variability. We also propose that in all ULXs when the accretion rate is low enough (but still super-Eddington) the QPO and FTN disappear. Assuming that the maximum X-ray luminosity depends only on the black hole (BH) mass and not on the accretion rate (not considering the effects of either the inclination of the super-Eddington disc nor geometrical beaming of radiation) we estimate that all the ULXs have about similar BH masses, with the exception of M82 X-1, which might be 10 times more massive.Comment: 15 pages, 7 figures, accepted for publication in MNRA

    Broad-band X-ray spectral evolution of GX 339-4 during a state transition

    Get PDF
    We report on X-ray and soft gamma-ray observations of the black-hole candidate GX 339-4 during its 2007 outburst, performed with the RXTE and INTEGRAL satellites. The hardness-intensity diagram of all RXTE/PCA data combined shows a q-shaped track similar to that observed in previous outbursts.The evolution in the diagram suggested that a transition from hard-intermediate state to soft-intermediate state occurred, simultaneously with INTEGRAL observations performed in March. The transition is confirmed by the timing analysis presented in this work, which reveals that a weak type-A quasi-periodic oscillation (QPO) replaces a strong type-C QPO. At the same time, spectral analysis shows that the flux of the high-energy component shows a significant decrease in its flux. However, we observe a delay (roughly one day) between variations of the spectral parameters of the high-energy component and changes in the flux and timing properties. The changes in the high-energy component can be explained either in terms the high-energy cut-off or in terms of a variations in the reflection component. We compare our results with those from a similar transition during the 2004 outburst of GX 339-4.Comment: 8 pages, 6 figures, accepted for publication in MNRAS Main Journa

    Recent activity of the Be/X-ray binary system SAX J2103.5+4545

    Full text link
    Aims. We present a multiwavelength study of the Be/X-ray binary system SAX J2103.5+4545 with the goal of better characterizing the transient behaviour of this source. Methods. SAX J2103.5+4545 was observed by Swift-XRT four times in 2007 from April 25 to May 5, and during quiescence in 2012 August 31. In addition, this source has been monitored from the ground-based astronomical observatories of El Teide (Tenerife, Spain), Roque de los Muchachos (La Palma, Spain) and Sierra Nevada (Granada, Spain) since 2011 August, and from the TUBITAK National Observatory (Antalya, Turkey) since 2009 June. We have performed spectral and photometric temporal analyses in order to investigate the different states exhibited by SAX J2103.5+4545. Results. In X-rays, an absorbed power law model provided the best fit for all the XRT spectra. An iron-line feature at ~6.42 keV was present in all the observations except for that taken during quiescence in 2012. The photon indexes are consistent with previous studies of SAX J2103.5+4545 in high/low luminosity states. Pulsations were found in all the XRT data from 2007 (2.839(2) mHz; MJD 54222.02), but not during quiescence. Both optical outbursts in 2010 and 2012 lasted for about 8/9 months (as the one in 2007 probably did and the current one in 2014 might do) and were most probably caused by mass ejection events from the Be star that eventually fed the circumstellar disc. All of these outbursts started about 3 months before the triggering of the X-ray activity, and about the same period before the maximum of the H_alpha line equivalent width (in emission) was reached at only ~ -5 \AA. In this work we found that the global correlation between the BV variability and the X-ray intensity was also observed at longer wavelengths in the IR domain.Comment: 11 pages, 7 figures, and online material (2 tables). Submitted to A&A in 2014 Januar
    • …
    corecore