6 research outputs found

    Precision measurement of the mass difference between light nuclei and anti-nuclei

    No full text
    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (), and 3 He and nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 €‰TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T). © 2015 Macmillan Publishers Limited. All rights reserved

    Lambda(+)(c) production in pp collisions at root s=7 TeV and in p-Pb collisions at root s(NN)=5.02 TeV

    No full text
    The p(T)-differential production cross section of prompt Lambda(+)(c) charmed baryons was measured with the ALICE detector at the Large Hadron Collider (LHC) in pp collisions at root s = 7 TeV and in p-Pb collisions at root s(NN) = 5.02 TeV at midrapidity. The Lambda(+)(c) and (Lambda) over bar (-)(c) were reconstructed in the hadronic decay modes Lambda(+)(c) -> pK(-)pi(+), Lambda(+)(c)-> pK(S)(0)) and in the semileptonic channel Lambda(+)(c) -> e(+)nu(e)Lambda (and charge conjugates). The measured values of the Lambda(+)(c)/D-0 ratio, which is sensitive to the c-quark hadronisation mechanism, and in particular to the production of baryons, are presented and are larger than those measured previously in different colliding systems, centre-of-mass energies, rapidity and p(T) intervals, where the Lambda(+)(c) production process may differ. The results are compared with the expectations obtained from perturbative Quantum Chromodynamics calculations and Monte Carlo event generators. Neither perturbative QCD calculations nor Monte Carlo models reproduce the data, indicating that the fragmentation of heavy-flavour baryons is not well understood. The first measurement at the LHC of the Lambda(+)(c) nuclear modification factor, R-ppb, is also presented. The R-ppb is found to be consistent with unity and with that of D mesons within the uncertainties, and consistent with a theoretical calculation that includes cold nuclear matter effects and a calculation that includes charm quark interactions with a deconfined medium

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    No full text
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results, indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed

    Lambda(+)(c) production in pp collisions at root s=7 TeV and in p-Pb collisions at root s(NN)=5.02 TeV

    No full text
    CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOThe p(T)-differential production cross section of prompt Lambda(+)(c) charmed baryons was measured with the ALICE detector at the Large Hadron Collider (LHC) in pp collisions at root s = 7 TeV and in p-Pb collisions at root s(NN) = 5.02 TeV at midrapidity. The Lambda(+)(c) and (Lambda) over bar (-)(c) were reconstructed in the hadronic decay modes Lambda(+)(c) -gt; pK(-)pi(+), Lambda(+)(c)-gt; pK(S)(0)) and in the semileptonic channel Lambda(+ )(c)-gt; e(+)nu(e)Lambda (and charge conjugates). The measured values of the Lambda(+)(c)/D-0 ratio, which is sensitive to the c-quark hadronisation mechanism, and in particular to the production of baryons, are presented and are larger than those measured previously in different colliding systems, centre-of-mass energies, rapidity and p(T) intervals, where the Lambda(+)(c) production process may differ. The results are compared with the expectations obtained from perturbative Quantum Chromodynamics calculations and Monte Carlo event generators. Neither perturbative QCD calculations nor Monte Carlo models reproduce the data, indicating that the fragmentation of heavy-flavour baryons is not well understood. The first measurement at the LHC of the Lambda(+)(c) nuclear modification factor, R-ppb, is also presented. The R-ppb is found to be consistent with unity and with that of D mesons within the uncertainties, and consistent with a theoretical calculation that includes cold nuclear matter effects and a calculation that includes charm quark interactions with a deconfined medium.4147CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOAgĂȘncias de fomento estrangeiras apoiaram essa pesquisa, mais informaçÔes acesse artig

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    No full text
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results, indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved

    Precision measurement of the mass difference between light nuclei and anti-nuclei

    No full text
    The measurement of the mass di erences for systems bound by the strong force has reached a very high precision with protons and anti-protons1,2. The extension of such measure- ment from (anti-)baryons to (anti-)nuclei allows one to probe any di erence in the interactions between nucleons and anti- nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by e ective theories3, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the di erence between the ratios ofthemassandchargeofdeuterons(d)andanti-deuterons(d ̄), and 3He and 3He nuclei carried out with the ALICE (A Large Ion Collider Experiment)4 detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge di erences confirms CPT invariance to an unprecedented precision in the sector of light nuclei5,6. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T)
    corecore