362 research outputs found

    Membrane Technology for the Recovery of Lignin: A Review

    Get PDF
    Citation: Humpert, D., Ebrahimi, M., & Czermak, P. (2016). Membrane Technology for the Recovery of Lignin: A Review. Membranes, 6(3), 13. doi:10.3390/membranes6030042Utilization of renewable resources is becoming increasingly important, and only sustainable processes that convert such resources into useful products can achieve environmentally beneficial economic growth. Wastewater from the pulp and paper industry is an unutilized resource offering the potential to recover valuable products such as lignin, pigments, and water [1]. The recovery of lignin is particularly important because it has many applications, and membrane technology has been investigated as the basis of innovative recovery solutions. The concentration of lignin can be increased from 62 to 285 g.L-1 using membranes and the recovered lignin is extremely pure. Membrane technology is also scalable and adaptable to different waste liquors from the pulp and paper industry

    Mathematical modeling of diafiltration

    Get PDF
    The main objective of this study is to provide a general mathematical model in a compact form for batch diafiltration techniques. The presented mathematical framework gives a rich representation of diafiltration processes due to the employment of concentration-dependent solute rejections. It unifies the existing models for constant volume dilution mode, variable volume dilution mode, and concentration mode operations. The use of such a mathematical framework allows the optimization of the overall diafiltration process. The provided methodology is particularly applicable for decision makers to choose an appropriate diafiltration technique for the given separation design problem

    Manufacturing Cells for Clinical Use

    Get PDF
    Citation: Weiss, M. L., Rao, M. S., Deans, R., & Czermak, P. (2016). Manufacturing Cells for Clinical Use. Stem Cells International, 5. doi:10.1155/2016/1750697The growth in the number of registered clinical trials indicates that there is a need for cells for many types of cell therapy. Figure 1, which is reprinted from the excellent blog maintained by Alexi Bersenev, shows that the cell type used in most clinical trials worldwide is the mesenchymal stromal cell (MSC). The MSC type requires in vitro expansion to reach a clinical dose and thus there is a desire to optimize and standardize processes and procedures for MSC manufacture specifically for clinical use

    Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time

    Full text link
    OBJECTIVES To compare the image quality and diagnostic performance of conventional motion-corrected periodically rotated overlapping parallel line with enhanced reconstruction (PROPELLER) MRI sequences with post-processed PROPELLER MRI sequences using deep learning-based (DL) reconstructions. METHODS In this prospective study of 30 patients, conventional (19 min 18 s) and accelerated MRI sequences (7 min 16 s) using the PROPELLER technique were acquired. Accelerated sequences were post-processed using DL. The image quality and diagnostic confidence were qualitatively assessed by 2 readers using a 5-point Likert scale. Analysis of the pathological findings of cartilage, rotator cuff tendons and muscles, glenoid labrum and subacromial bursa was performed. Inter-reader agreement was calculated using Cohen's kappa statistic. Quantitative evaluation of image quality was measured using the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). RESULTS Mean image quality and diagnostic confidence in evaluation of all shoulder structures were higher in DL sequences (p value = 0.01). Inter-reader agreement ranged between kappa values of 0.155 (assessment of the bursa) and 0.947 (assessment of the rotator cuff muscles). In 17 cases, thickening of the subacromial bursa of more than 2 mm was only visible in DL sequences. The pathologies of the other structures could be properly evaluated by conventional and DL sequences. Mean SNR (p value = 0.01) and CNR (p value = 0.02) were significantly higher for DL sequences. CONCLUSIONS The accelerated PROPELLER sequences with DL post-processing showed superior image quality and higher diagnostic confidence compared to the conventional PROPELLER sequences. Subacromial bursa can be thoroughly assessed in DL sequences, while the other structures of the shoulder joint can be assessed in conventional and DL sequences with a good agreement between sequences. KEY POINTS ‱ MRI of the shoulder requires long scan times and can be hampered by motion artifacts. ‱ Deep learning-based convolutional neural networks are used to reduce image noise and scan time while maintaining optimal image quality. The radial k-space acquisition technique (PROPELLER) can reduce the scan time and has potential to reduce motion artifacts. ‱ DL sequences show a higher diagnostic confidence than conventional sequences and therefore are preferred for assessment of the subacromial bursa, while conventional and DL sequences show comparable performance in the evaluation of the shoulder joint

    Role of complement in in vitro and in vivo lung inflammatory reactions

    Full text link
    Complement is one of the integral buttresses of the inflammatory response. In addition to host defense activities, proinflammatory properties of several complement components are described. This overview elucidates the role of complement in inflammatory reactions in vitro and in vivo, focusing on the complement activation products, C5a, and the membrane attack complex, C5b‐9. Using several approaches, the impact of these complement components in mechanisms relevant to neutrophil recruitment is emphasized. In addition, the participation of complement in endothelial superoxide generation and its essential requirement for full expression of lung injury is demonstrated, as are the involved intracellular signal transduction pathways. Understanding the mechanisms of complement‐induced proinflammatory effects may provide a basis for future therapeutic blockade of complement and/or its activation products. J. Leukoc. Biol. 64: 40–48; 1998.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142061/1/jlb0040.pd

    A rapid method for an offline glycerol determination during microbial fermentation

    Get PDF
    Background: The purpose of this work was to find a rapid method for glycerol detection during microbial fermentations. The method requirements were, first, to avoid sample pretreatment, and second, to measure glycerol precisely especially out of fermentation broth. Results: This was achieved by combining two reaction principles \u2014 the Malaprade reaction and the Hantzsch reaction. In the Malaprade reaction, glycerol is converted into formaldehyde. This forms a dye in the Hantzsch reaction after which adsorption is than detected. The subsequent assay was investigated with two different fermentation media, a chemically undefined and a chemically defined media, used for Pichia pastoris fermentation. In both media, as well as in real fermentation samples, glycerol content could be reproducibly detected with the method. Moreover, measurements were more precise than using a standard glycerol detection kit. Conclusions: With this rapid assay, glycerol could be detected easily in microbial fermentation broth. It is reliable over a wide concentration range including advantages such as an easy assay set-up, a short assay time and no sample pretreatment

    Regulatory effects of interleukin‐11 during acute lung inflammatory injury

    Full text link
    The role of interleukin‐11 (IL‐11) was evaluated in the IgG immune complex model of acute lung injury in rats. IL‐11 mRNA and protein were both up‐regulated during the course of this inflammatory response. Exogenously administered IL‐11 substantially reduced, in a dose‐dependent manner, the intrapulmonary accumulation of neutrophils and the lung vascular leak of albumin. These in vivo anti‐inflammatory effects of IL‐11 were associated with reduced NF‐ÎșB activation in lung, reduced levels of tumor necrosis factor α (TNF‐α) in bronchoalveolar lavage (BAL) fluids, and diminished up‐regulation of lung vascular ICAM‐1. It is interesting that IL‐11 did not affect BAL fluid content of the CXC chemokines, macrophage inflammatory protein‐2 (MIP‐2) and cytokine‐inducible neutrophil chemoattractant (CINC); the presence of IL‐11 did not affect these chemokines. However, BAL content of C5a was reduced by IL‐11. These data indicate that IL‐11 is a regulatory cytokine in the lung and that, like other members of this family, its anti‐inflammatory properties appear to be linked to its suppression of NF‐ÎșB activation, diminished production of TNF‐α, and reduced up‐regulation of lung vascular ICAM‐1. J. Leukoc. Biol. 66: 151–157; 1999.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141937/1/jlb0151.pd

    Membrane-assisted enzymatic production of galactosyl-oligosaccharides from lactose in a continuous process

    Get PDF
    Functional foods such as oligosaccharides have attained significant acceptance in Japan and are attracting interest elsewhere. Beneficial physiological properties are attributed to oligosaccharides. Here, we describe the continuous production of oligosaccharides from a low-cost substrate (lactose) in a continuous membrane-assisted reactor (both polymeric and inorganic membranes were tested). Different enzymes, a number of feed concentrations, and different average residence times were investigated. The enzymes were used in their native form. Retention and recycling of the enzyme was successful, while the products together with some unreacted substrate and byproducts were removed as the ultrafiltration permeate. For the ultrafiltration, a steady-state flux of about 20 l/m2 hr was achieved. A maximum oligosaccharide concentration of over 40 %w/w was reached with an average residence time of 1 hr and a feed lactose concentration of 31 %w/w. Pilot scale experiments based on the laboratory tests are also reported

    Conformal TiO2_2 aerogel-like films by plasma deposition: from omniphobic antireflective coatings to perovskite solar cells photoelectrodes

    Full text link
    The ability to control porosity in oxide thin films is one of the key factors that determine their properties. Despite the abundance of dry processes for the synthesis of oxide porous layers, the high porosity range is typically achieved by spin-coating-based wet chemical methods. Besides, special techniques such as supercritical drying are required to replace the pore liquid with air while maintaining the porous network. In this study, we propose a new method for the fabrication of ultra-porous titanium dioxide thin films at room or mild temperatures (T lower or equal to 120 degrees Celsius) by the sequential process involving plasma deposition and etching. These films are conformal to the substrate topography even for high-aspect-ratio substrates and show percolated porosity values above 85 percent that are comparable to advanced aerogels. The films deposited at room temperature are amorphous. However, they become partly crystalline at slightly higher temperatures presenting a distribution of anatase clusters embedded in the sponge-like structure. Surprisingly, the porous structure remains after annealing the films at 450 degrees Celsius in air, which increases the fraction of the embedded anatase nanocrystals. The films are antireflective, omniphobic, and photoactive becoming super-hydrophilic subjected to UV light irradiation The supported percolated nanoporous structure can be used as an electron-conducting electrode in perovskite solar cells. The properties of the cells depend on the aerogel film thickness reaching efficiencies close to those of commercial mesoporous anatase electrodes. This generic solvent-free synthesis is scalable and is applicable to ultra-high porous conformal oxides of different compositions with potential applications in photonics, optoelectronics, energy storage, and controlled wetting.Comment: 31 pages, 10 Figs. plus Supporting Information 7 pags, 6 figs. Full Pape

    Silicon detector for a Compton Camera in Nuclear Medical Imaging

    Get PDF
    Electronically collimated gamma ca\-me\-ras based on Com\-pton scattering in silicon pad sensors may improve imaging in nuclear medicine and bio-medical research. The work described here concentrates on the silicon pad detector developed for a prototype Compton camera. The silicon pad sensors are read out using low noise VLSI CMOS chips and novel fast triggering chips. Depending on the application a light weight and dense packaging of sensors and its readout electronics on a hybrid is required. We describe the silicon pad sensor and their readout with the newly designed hybrid. %The silicon detector of a Compton camera %may contain up to 10510^5~analogue channels requiring %a fast and low cost data acquisition system. We also describe a modular and low-cost data acquisition system (CCDAQ) based on a digital signal processor which is interfaced to the EPP port of personal computers. Using the CCDAQ and the hybrids energy spectra of gamma-ray photons from technetium (4399m^{\rm 99m}_{43}Tc) and americium (95241^{241}_{95}Am) were acquired with an energy resolution of 2.45~keV FWHM for the 140.5~keV photo-absorption line of 4399m^{\rm 99m}_{43}Tc. For all pads the discrimination threshold in the trigger chip was between (15 and 25)~keV
    • 

    corecore