1,274 research outputs found
Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-suburban atmospheres of the Pearl River Delta (PRD) region of south China
In a study conducted in late summer 2000, a wide range of volatile organic compounds (VOCs) were measured throughout five target cities in the Pearl River Delta (PRD) region of south China. Twenty-eight nonmethane hydrocarbons (NMHCs; 13 saturated, 9 unsaturated, and 6 aromatic) are discussed. The effect of rapid industrialization was studied for three categories of landuse in the PRD: Industrial, industrial-urban, and industrial-suburban. The highest VOC mixing ratios were observed in industrial areas. Despite its relatively short atmospheric lifetime (2-3 days), toluene, which is largely emitted from industrial solvent use and vehicular emissions, was the most abundant NMHC quantified. Ethane, ethene, ethyne, propane, n-butane, i-pentane, benzene, and m-xylene were the next most abundant VOCs. Direct emissions from industrial activities were found to greatly impact the air quality in nearby neighborhoods. These emissions lead to large concentration variations for many VOCs in the five PRD study cities. Good correlations between isoprene and several short-lived combustion products were found in industrial areas, suggesting that in addition to biogenic sources, anthropogenic emissions may contribute to urban isoprene levels. This study provides a snapshot of industrial, industrial-urban, and industrial-suburban NMHCs in the five most industrially developed cities of the PRD. Increased impact of industrial activities on PRD air quality due to the rapid spread of industry from urban to suburban and rural areas, and the decrease of farmland, is expected to continue until effective emission standards are implemented. Copyright 2006 by the American Geophysical Union
Recommended from our members
Ambient halocarbon mixing ratios in 45 Chinese cities
During this study 158 whole air samples were collected in 45 Chinese cities in January and February 2001. The spatial distribution of different classes of halocarbons in the Chinese urban atmosphere, including chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), Halon-1211, and other chlorinated compounds is presented and discussed. Most of these compounds were enhanced compared to background levels. However, the mean enhancement of CFCs was relatively small, with CFC-12 and CFC-11 increases of 6% (range 1-31%) and 10% (range 2-89%), respectively, with respect to the global background. On the contrary, strongly enhanced levels of CFC replacement compounds and halogenated compounds used as solvents were measured. The average Halon-1211 concentration exceeded the background of 4.3 pptv by 75% and was higher than 10 pptv in several cities. Methyl chloride mixing ratios were also strongly elevated (78% higher than background levels), which is likely related to the widespread use of coal and biofuel in China. © 2006 Elsevier Ltd. All rights reserved
Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast
Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs). The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM) pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR) pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI) whereas no significant reduction was found in smaller chromosomes (III and VI). On the other hand, the absence of Rad17 (a critical component of the ATR pathway) lead to an increase in DSB formation (chromosomes VII and II were tested). We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation
Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-suburban atmospheres of the Pearl River Delta (PRD) region of south China
Author name used in this publication: Chan, Lo-Yin.Author name used in this publication: Chan, Chuen-Yu.2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Circumcision to prevent HIV and other sexually transmitted infections in men who have sex with men: a systematic review and meta-analysis of global data
Background: Men who have sex with men (MSM) are disproportionately affected by HIV and other sexually transmitted infections (STIs) worldwide. Previous reviews investigating the role of circumcision in preventing HIV and other STIs among MSM were inconclusive. Many new studies have emerged in the past decade. To inform global prevention strategies for HIV and other STIs among MSM, we reviewed all available evidence on the associations between circumcision and HIV and other STIs among MSM. Methods: In this systematic review and meta-analysis, we searched PubMed, Web of Science, BioMed Central, Scopus, ResearchGate, Cochrane Library, Embase, PsycINFO, Google Scholar, and websites of international HIV and STI conferences for studies published before March 8, 2018. Interventional or observational studies containing original quantitative data describing associations between circumcision and incident or prevalent infection of HIV and other STIs among MSM were included. Studies were excluded if MSM could not be distinguished from men who have sex with women only. We calculated pooled odds ratios (ORs) and their 95% CIs using random-effect models. We assessed risk of bias using the Newcastle-Ottawa scale. Findings: We identified 62 observational studies including 119 248 MSM. Circumcision was associated with 23% reduced odds of HIV infection among MSM overall (OR 0·77, 95% CI 0·67–0·89; number of estimates [k]=45; heterogeneity I 2 =77%). Circumcision was protective against HIV infection among MSM in countries of low and middle income (0·58, 0·41–0·83; k=23; I 2 =77%) but not among MSM in high-income countries (0·99, 0·90–1·09; k=20; I 2 =40%). Circumcision was associated with reduced odds of herpes simplex virus (HSV) infection among MSM overall (0·84, 0·75–0·95; k=5; I 2 =0%) and penile human papillomavirus (HPV) infection among HIV-infected MSM (0·71, 0·51–0·99; k=3; I 2 =0%). Interpretation: We found evidence that circumcision is likely to protect MSM from HIV infection, particularly in countries of low and middle income. Circumcision might also protect MSM from HSV and penile HPV infection. MSM should be included in campaigns promoting circumcision among men in countries of low and middle income. In view of the substantial proportion of MSM in countries of low and middle income who also have sex with women, well designed longitudinal studies differentiating MSM only and bisexual men are needed to clarify the effect of circumcision on male-to-male transmission of HIV and other STIs. Funding: National Natural Science Foundation of China, National Science and Technology Major Project of China, Australian National Health and Medical Research Council Early Career Fellowship, Sanming Project of Medicine in Shenzhen, National Institutes of Health, Mega Projects of National Science Research for the 13th Five-Year Plan, Doris Duke Charitable Foundation
Recent translational research: stem cells as the roots of breast cancer
Common phenotypes of cancer and stem cells suggest that breast cancers arise from stem cells. Breast epithelial cells with stem cell phenotypes have been shown to be more susceptible to immortalization and neoplastic transformation. Breast tumor stem cells with CD44(+)/CD24(-/low)Lineage(- )markers have been isolated. The role of these cells in tumor progression and clinical outcome is not clear. The relationship between breast stem cell and tumor stem cell may be elucidated by further studies of carcinogenesis of nonadherent mammosphere cells with stem cell features and by derivation of CD44(+)/CD24(-/low )cells from an adherent breast epithelial stem cell type
Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials
Recent years witnessed a rapid growth of interest of scientific and
engineering communities to thermal properties of materials. Carbon allotropes
and derivatives occupy a unique place in terms of their ability to conduct
heat. The room-temperature thermal conductivity of carbon materials span an
extraordinary large range - of over five orders of magnitude - from the lowest
in amorphous carbons to the highest in graphene and carbon nanotubes. I review
thermal and thermoelectric properties of carbon materials focusing on recent
results for graphene, carbon nanotubes and nanostructured carbon materials with
different degrees of disorder. A special attention is given to the unusual size
dependence of heat conduction in two-dimensional crystals and, specifically, in
graphene. I also describe prospects of applications of graphene and carbon
materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
A β-Catenin-Dependent Wnt Pathway Mediates Anteroposterior Axon Guidance in C. elegans Motor Neurons
Wnts are secreted glycoproteins that regulate diverse aspects of development, including cell proliferation, cell fate specification and differentiation. More recently, Wnts have been shown to direct axon guidance in vertebrates, flies and worms. However, little is known about the intracellular signaling pathways downstream of Wnts in axon guidance.Here we show that the posterior C. elegans Wnt protein LIN-44 repels the axons of the adjacent D-type motor neurons by activating its receptor LIN-17/Frizzled on the neurons. Moreover, mutations in mig-5/Disheveled, gsk-3, pry-1/Axin, bar-1/beta-catenin and pop-1/TCF, also cause disrupted D-type axon pathfinding. Reduced BAR-1/beta-catenin activity in D-type axons leads to undergrowth of axons, while stabilization of BAR-1/beta-catenin in a lin-23/SCF(beta-TrCP) mutant results in an overextension phenotype.Together, our data provide evidence that Wnt-mediated axon guidance can be transduced through a beta-catenin-dependent pathway
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Facile Fabrication of Ultrafine Hollow Silica and Magnetic Hollow Silica Nanoparticles by a Dual-Templating Approach
The development of synthetic process for hollow silica materials is an issue of considerable topical interest. While a number of chemical routes are available and are extensively used, the diameter of hollow silica often large than 50 nm. Here, we report on a facial route to synthesis ultrafine hollow silica nanoparticles (the diameter of ca. 24 nm) with high surface area by using cetyltrimethylammmonium bromide (CTAB) and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as co-templates and subsequent annealing treatment. When the hollow magnetite nanoparticles were introduced into the reaction, the ultrafine magnetic hollow silica nanoparticles with the diameter of ca. 32 nm were obtained correspondingly. Transmission electron microscopy studies confirm that the nanoparticles are composed of amorphous silica and that the majority of them are hollow
- …