119 research outputs found

    Outcomes of first-ever stroke

    Get PDF
    The long-term prognosis after first-ever stroke is poor—5 years after their stroke, 39.7% of patients had died and 10.7% were dependent in terms of activity of daily living; 136 (21%) who survived at least 30 days after the initial stroke, had a recurrence within 5 years.published_or_final_versio

    Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C

    Get PDF
    The term laminopathies defines a group of genetic disorders caused by defects in the nuclear envelope, mostly the lamins. Lamins are the main constituents of the nuclear lamina, a filamentous meshwork associated with the inner nuclear membrane that provides mechanical stability and plays important roles in processes such as transcription, DNA replication and chromatin organization. More than 300 mutations in lamin A/C have been associated with diverse clinical phenotypes, understanding the molecular basis of these diseases may provide a rationale for treating them. Here we describe the generation of induced pluripotent stem cells (iPSCs) from a patient with inherited dilated cardiomiopathy and 2 patients with distinct accelerated forms of aging, atypical Werner syndrome and Hutchinson Gilford progeria, all of which are caused by mutations in lamin A/C. These cell lines were pluripotent and displayed normal nuclear membrane morphology compared to donor fibroblasts. Their differentiated progeny reproduced the disease phenotype, reinforcing the idea that they represent excellent tools for understanding the role of lamin A/C in normal physiology and the clinical diversity associated with these diseases

    Host factors do not influence the colonization or infection by fluconazole resistant Candida species in hospitalized patients

    Get PDF
    Nosocomial yeast infections have significantly increased during the past two decades in industrialized countries, including Taiwan. This has been associated with the emergence of resistance to fluconazole and other antifungal drugs. The medical records of 88 patients, colonized or infected with Candida species, from nine of the 22 hospitals that provided clinical isolates to the Taiwan Surveillance of Antimicrobial Resistance of Yeasts (TSARY) program in 1999 were reviewed. A total of 35 patients contributed fluconazole resistant strains [minimum inhibitory concentrations (MICs) ≧ 64 mg/l], while the remaining 53 patients contributed susceptible ones (MICs ≦ 8 mg/l). Fluconazole resistance was more frequent among isolates of Candida tropicalis (46.5%) than either C. albicans (36.8%) or C. glabrata (30.8%). There was no significant difference in demographic characteristics or underlying diseases among patients contributing strains different in drug susceptibility

    Conserved Alternative Splicing and Expression Patterns of Arthropod N-Cadherin

    Get PDF
    Metazoan development requires complex mechanisms to generate cells with diverse function. Alternative splicing of pre-mRNA not only expands proteomic diversity but also provides a means to regulate tissue-specific molecular expression. The N-Cadherin gene in Drosophila contains three pairs of mutually-exclusive alternatively-spliced exons (MEs). However, no significant differences among the resulting protein isoforms have been successfully demonstrated in vivo. Furthermore, while the N-Cadherin gene products exhibit a complex spatiotemporal expression pattern within embryos, its underlying mechanisms and significance remain unknown. Here, we present results that suggest a critical role for alternative splicing in producing a crucial and reproducible complexity in the expression pattern of arthropod N-Cadherin. We demonstrate that the arthropod N-Cadherin gene has maintained the three sets of MEs for over 400 million years using in silico and in vivo approaches. Expression of isoforms derived from these MEs receives precise spatiotemporal control critical during development. Both Drosophila and Tribolium use ME-13a and ME-13b in “neural” and “mesodermal” splice variants, respectively. As proteins, either ME-13a- or ME-13b-containing isoform can cell-autonomously rescue the embryonic lethality caused by genetic loss of N-Cadherin. Ectopic muscle expression of either isoform beyond the time it normally ceases leads to paralysis and lethality. Together, our results offer an example of well-conserved alternative splicing increasing cellular diversity in metazoans

    The association between socioeconomic status and traditional chinese medicine use among children in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional Chinese medicine (TCM) utilization is common in Asian countries. Limited studies are available on the socioeconomic status (SES) associated with TCM use among the pediatric population. We report on the association between SES and TCM use among children and adolescents in Taiwan.</p> <p>Methods</p> <p>A National Health Interview Survey was conducted in Taiwan in 2001 that included 5,971 children and adolescents. We assessed the children's SES using the head of household's education, occupation and income. This information was used to calculate pediatric SES scores, which in turn were divided into quartiles. Children and adolescents who visited TCM in the past month were defined as TCM users.</p> <p>Results</p> <p>Compared to children in the second SES quartile, children in the fourth SES quartile had a higher average number of TCM visits (0.12 vs. 0.06 visits, p = 0.027) and higher TCM use prevalence (5.0% vs. 3.6%, p = 0.024) within the past month. The adjusted odds ratio (OR) for TCM use was higher for children in the fourth SES quartile than for those in the first SES quartile (OR 1.49; 95% confidence interval [CI] 1.02-2.17). The corresponding OR was 2.17 for girls (95% CI 1.24-3.78). The highest-SES girls (aged 10-18 years) were most likely to visit TCM practices (OR 2.47; 95% CI 1.25-4.90).</p> <p>Conclusions</p> <p>Children and adolescents with high SES were more likely to use TCM and especially girls aged 10-18 years. Our findings point to the high use of complementary and alternative medicine among children and adolescents.</p

    Broadening of Neutralization Activity to Directly Block a Dominant Antibody-Driven SARS-Coronavirus Evolution Pathway

    Get PDF
    Phylogenetic analyses have provided strong evidence that amino acid changes in spike (S) protein of animal and human SARS coronaviruses (SARS-CoVs) during and between two zoonotic transfers (2002/03 and 2003/04) are the result of positive selection. While several studies support that some amino acid changes between animal and human viruses are the result of inter-species adaptation, the role of neutralizing antibodies (nAbs) in driving SARS-CoV evolution, particularly during intra-species transmission, is unknown. A detailed examination of SARS-CoV infected animal and human convalescent sera could provide evidence of nAb pressure which, if found, may lead to strategies to effectively block virus evolution pathways by broadening the activity of nAbs. Here we show, by focusing on a dominant neutralization epitope, that contemporaneous- and cross-strain nAb responses against SARS-CoV spike protein exist during natural infection. In vitro immune pressure on this epitope using 2002/03 strain-specific nAb 80R recapitulated a dominant escape mutation that was present in all 2003/04 animal and human viruses. Strategies to block this nAb escape/naturally occurring evolution pathway by generating broad nAbs (BnAbs) with activity against 80R escape mutants and both 2002/03 and 2003/04 strains were explored. Structure-based amino acid changes in an activation-induced cytidine deaminase (AID) “hot spot” in a light chain CDR (complementarity determining region) alone, introduced through shuffling of naturally occurring non-immune human VL chain repertoire or by targeted mutagenesis, were successful in generating these BnAbs. These results demonstrate that nAb-mediated immune pressure is likely a driving force for positive selection during intra-species transmission of SARS-CoV. Somatic hypermutation (SHM) of a single VL CDR can markedly broaden the activity of a strain-specific nAb. The strategies investigated in this study, in particular the use of structural information in combination of chain-shuffling as well as hot-spot CDR mutagenesis, can be exploited to broaden neutralization activity, to improve anti-viral nAb therapies, and directly manipulate virus evolution

    Network analysis of depressive symptoms in Hong Kong residents during the COVID-19 pandemic

    Get PDF
    In network theory depression is conceptualized as a complex network of individual symptoms that influence each other, and central symptoms in the network have the greatest impact on other symptoms. Clinical features of depression are largely determined by sociocultural context. No previous study examined the network structure of depressive symptoms in Hong Kong residents. The aim of this study was to characterize the depressive symptom network structure in a community adult sample in Hong Kong during the COVID-19 pandemic. A total of 11,072 participants were recruited between 24 March and 20 April 2020. Depressive symptoms were measured using the Patient Health Questionnaire-9. The network structure of depressive symptoms was characterized, and indices of “strength”, “betweenness”, and “closeness” were used to identify symptoms central to the network. Network stability was examined using a case-dropping bootstrap procedure. Guilt, Sad Mood, and Energy symptoms had the highest centrality values. In contrast, Concentration, Suicide, and Sleep had lower centrality values. There were no significant differences in network global strength (p = 0.259), distribution of edge weights (p = 0.73) and individual edge weights (all p values > 0.05 after Holm–Bonferroni corrections) between males and females. Guilt, Sad Mood, and Energy symptoms were central in the depressive symptom network. These central symptoms may be targets for focused treatments and future psychological and neurobiological research to gain novel insight into depression

    HP1a Targets the Drosophila KDM4A Demethylase to a Subset of Heterochromatic Genes to Regulate H3K36me3 Levels

    Get PDF
    The KDM4 subfamily of JmjC domain-containing demethylases mediates demethylation of histone H3K36me3/me2 and H3K9me3/me2. Several studies have shown that human and yeast KDM4 proteins bind to specific gene promoters and regulate gene expression. However, the genome-wide distribution of KDM4 proteins and the mechanism of genomic-targeting remain elusive. We have previously identified Drosophila KDM4A (dKDM4A) as a histone H3K36me3 demethylase that directly interacts with HP1a. Here, we performed H3K36me3 ChIP-chip analysis in wild type and dkdm4a mutant embryos to identify genes regulated by dKDM4A demethylase activity in vivo. A subset of heterochromatic genes that show increased H3K36me3 levels in dkdm4a mutant embryos overlap with HP1a target genes. More importantly, binding to HP1a is required for dKDM4A-mediated H3K36me3 demethylation at a subset of heterochromatic genes. Collectively, these results show that HP1a functions to target the H3K36 demethylase dKDM4A to heterochromatic genes in Drosophila

    Exacerbated Innate Host Response to SARS-CoV in Aged Non-Human Primates

    Get PDF
    The emergence of viral respiratory pathogens with pandemic potential, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and influenza A H5N1, urges the need for deciphering their pathogenesis to develop new intervention strategies. SARS-CoV infection causes acute lung injury (ALI) that may develop into life-threatening acute respiratory distress syndrome (ARDS) with advanced age correlating positively with adverse disease outcome. The molecular pathways, however, that cause virus-induced ALI/ARDS in aged individuals are ill-defined. Here, we show that SARS-CoV-infected aged macaques develop more severe pathology than young adult animals, even though viral replication levels are similar. Comprehensive genomic analyses indicate that aged macaques have a stronger host response to virus infection than young adult macaques, with an increase in differential expression of genes associated with inflammation, with NF-κB as central player, whereas expression of type I interferon (IFN)-β is reduced. Therapeutic treatment of SARS-CoV-infected aged macaques with type I IFN reduces pathology and diminishes pro-inflammatory gene expression, including interleukin-8 (IL-8) levels, without affecting virus replication in the lungs. Thus, ALI in SARS-CoV-infected aged macaques developed as a result of an exacerbated innate host response. The anti-inflammatory action of type I IFN reveals a potential intervention strategy for virus-induced ALI
    corecore