278 research outputs found

    p150 ADAR1 isoform involved in maintenance of HeLa cell proliferation

    Get PDF
    BACKGROUND: RNA-specific adenosine deaminase ADAR1 is ubiquitously expressed in a variety of mammalian cells and tissues. Although its physiological importance in non-nervous tissues has been confirmed by analysis of null mutation phenotypes, few endogenous editing substrates have been identified in numerous peripheral tissues and biological function of ADAR1 has not been fully understood. METHODS: A conditional site-specific, ribozyme-based gene knock-down strategy was utilized to study the function of full-length isoform of ADAR1 (p150 protein) in HeLa cell. Double-stable HeLa cell lines were developed by transfecting HeLa Tet-On cells with a pTRE-derived plasmid that can express a hammerhead ribozyme against mRNA of p150 ADAR1 isoform under induction condition. Semi-quantitative RT-PCR and Western blotting were performed to measure the expression of p150 in selected cell clones. Cell proliferation was evaluated by means of MTT assay and growth curve analysis. Cellular morphological changes were observed under light microscope. Flow Cytometry was used for cell cycle analysis. Growth rate of cell transplants in BALB/c nude mice was also investigated. RESULTS: Both HeLa cell proliferation in vitro and the growth rate of transplanted HeLa cell-derived tumors in nude mice in vivo were significantly inhibited due to reduced expression of ADAR1 p150. Additionally, cell cycle analysis showed that cell progression from G1 phase to S phase was retarded in the ADAR1 p150 suppressed cells. CONCLUSION: Our results suggest that normal expression and functioning of p150 ADAR1 is essential for the maintenance of proper cell growth. The mechanisms underlying ADAR1's action might include both editing of currently unknown double-stranded RNAs and interacting with other cellular dsRNA-related processes

    A statistical model for the identification of genes governing the incidence of cancer with age

    Get PDF
    The cancer incidence increases with age. This epidemiological pattern of cancer incidence can be attributed to molecular and cellular processes of individual subjects. Also, the incidence of cancer with ages can be controlled by genes. Here we present a dynamic statistical model for explaining the epidemiological pattern of cancer incidence based on individual genes that regulate cancer formation and progression. We incorporate the mathematical equations of age-specific cancer incidence into a framework for functional mapping aimed at identifying quantitative trait loci (QTLs) for dynamic changes of a complex trait. The mathematical parameters that specify differences in the curve of cancer incidence among QTL genotypes are estimated within the context of maximum likelihood. The model provides testable quantitative hypotheses about the initiation and duration of genetic expression for QTLs involved in cancer progression. Computer simulation was used to examine the statistical behavior of the model. The model can be used as a tool for explaining the epidemiological pattern of cancer incidence

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel Οˆβ€²β†’Ο€+Ο€βˆ’J/ψ(J/Οˆβ†’Ξ³ppΛ‰)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06Γ—1081.06\times 10^8 Οˆβ€²\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppΛ‰p\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=1861βˆ’13+6(stat)βˆ’26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Ξ“<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Ξ±-Adducin Gly460Trp Gene Mutation and Essential Hypertension in a Chinese Population: A Meta-Analysis including 10960 Subjects

    Get PDF
    BACKGROUND: The Ξ±-adducin Gly460Trp (G460W) gene polymorphism may be associated with susceptibility to essential hypertension (EH), but this relationship remains controversial. In an attempt to resolve this issue, we conducted a meta-analysis. METHODS: Twenty-three separated studies involving 5939 EH patients and 5021 controls were retrieved and analyzed. Four ethnicities were included: Han, Kazakh, Mongolian, and She. Eighteen studies with 5087 EH patients and 4183 controls were included in the Han subgroup. Three studies with 636 EH patients and 462 controls were included in the Kazakh subgroup. The Mongolian subgroup was represented by only one study with 100 EH patients and 50 controls; similarly, only one study with 116 EH patients and 326 controls was available for the She subgroup. The pooled and ethnic group odds ratios (ORs) along with the corresponding 95% confidence intervals (95% CI) were assessed using a random effects model. RESULTS: There was a significant association between the Ξ±-adducin G460W gene polymorphism and EH in the pooled Chinese population under both an allelic genetic model (OR: 1.12, 95% CI: 1.04-1.20, Pβ€Š=β€Š0.002) and a recessive genetic model (OR: 1.40, 95% CI: 1.16-1.70, Pβ€Š=β€Š0.0005). In contrast, no significant association between the Ξ±-adducin G460W gene polymorphism and EH was observed in the dominant genetic model (OR: 0.88, 95% CI: 0.72-1.09, Pβ€Š=β€Š0.24). In stratified analysis by ethnicity, significantly increased risk was detected in the Han subgroup under an allelic genetic model (OR: 1.13, 95% CI: 1.04-1.23, Pβ€Š=β€Š0.003) and a recessive genetic model (OR: 1.43, 95% CI: 1.17-1.75, Pβ€Š=β€Š0.0006). CONCLUSIONS: In a Chinese population of mixed ethnicity, the Ξ±-adducin G460W gene polymorphism was linked to EH susceptibility, most strongly in Han Chinese

    Inhibitory effect of ginsenoside Rg3 combined with gemcitabine on angiogenesis and growth of lung cancer in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ginsenoside Rg3, a saponin extracted from ginseng, inhibits angiogenesis. The combination of low-dose chemotherapy and anti-angiogenic inhibitors suppresses growth of experimental tumors more effectively than conventional therapy or anti-angiogenic agent alone. The present study was designed to evaluate the efficacy of low-dose gemcitabine combined with ginsenoside Rg3 on angiogenesis and growth of established Lewis lung carcinoma in mice.</p> <p>Methods</p> <p>C57L/6 mice implanted with Lewis lung carcinoma were randomized into the control, ginsenoside Rg3, gemcitabine and combination group. The quality of life and survival of mice were recorded. Tumor volume, inhibitive rate and necrosis rate were estimated. Necrosis of tumor and signals of blood flow as well as dynamic parameters of arterial blood flow in tumors such as peak systolic velocity (PSV) and resistive index (RI) were detected by color Doppler ultrasound. In addition, expression of vascular endothelial cell growth factor (VEGF) and CD31 were observed by immunohistochemstry, and microvessel density (MVD) of the tumor tissues was assessed by CD31 immunohistochemical analysis.</p> <p>Results</p> <p>Quality of life of mice in the ginsenoside Rg3 and combination group were better than in the control and gemcitabine group. Combined therapy with ginsenoside Rg3 and gemcitabine not only enhanced efficacy on suppression of tumor growth and prolongation of the survival, but also increased necrosis rate of tumor significantly. In addition, the combination treatment could obviously decrease VEGF expression and MVD as well as signals of blood flow and PSV in tumors.</p> <p>Conclusion</p> <p>Ginsenoside Rg3 combined with gemcitabine may significantly inhibit angiogenesis and growth of lung cancer and improve survival and quality of life of tumor-bearing mice. The combination of chemotherapy and anti-angiogenic drugs may be an innovative and promising therapeutic strategy in the experimental treatment of human lung cancer.</p

    Tanshinone IIA Attenuates the Inflammatory Response and Apoptosis after Traumatic Injury of the Spinal Cord in Adult Rats

    Get PDF
    BACKGROUND: Spinal cord injury (SCI), including immediate mechanical injury and secondary injury, is associated with the inflammatory response, apoptosis and oxidative stress in response to traumatic injury. Tanshinone IIA (TIIA) is one of the major extracts obtained from Salvia miltiorrhiza BUNGE, which has anti-inflammatory and anti-apoptotic effects on many diseases. However, little is known about the effects of TIIA treatment on SCI. Therefore, the aim of the present study is to evaluate the pharmacological action of TIIA on secondary damage and the underlying mechanisms of experimental SCI in rats. METHODOLOGY/PRINCIPAL FINDINGS: SCI was generated using a weight drop device on the dorsal spinal cord via a two-level T9-T11 laminectomy. SCI in rats resulted in severe trauma, characterized by locomotor disturbance, edema, neutrophil infiltration, the production of astrocytes and inflammatory mediators, apoptosis and oxidative stress. TIIA treatment (20 mg/kg, i.p.) after SCI induced significant effects: (1) improved motor function (Basso, Beattie and Bresnahan scores), (2) reduced the degree of tissue injury (histological score), neutrophil infiltration (myeloperoxidase activity) and the expression of astrocytes, (3) inhibited the activation of SCI-related pathways, such as NF-ΞΊB and MAPK signaling pathways, (4) decreased the production of pro-inflammatory cytokines (TNF-Ξ±, IL-1Ξ², and IL-6) and iNOS, (5) reduced apoptosis (TUNEL staining, and Bcl-2 and caspase-3 expression) and (6) reversed the redox state imbalance. CONCLUSIONS/SIGNIFICANCE: The results clearly show that TIIA has a prominent protective effect against SCI through inhibiting the inflammatory response and apoptosis in the spinal cord tissue after SCI

    The Cumulative Effects of Polymorphisms in the DNA Mismatch Repair Genes and Tobacco Smoking in Oesophageal Cancer Risk

    Get PDF
    The DNA mismatch repair (MMR) enzymes repair errors in DNA that occur during normal DNA metabolism or are induced by certain cancer-contributing exposures. We assessed the association between 10 single-nucleotide polymorphisms (SNPs) in 5 MMR genes and oesophageal cancer risk in South Africans. Prior to genotyping, SNPs were selected from the HapMap database, based on their significantly different genotypic distributions between European ancestry populations and four HapMap populations of African origin. In the Mixed Ancestry group, the MSH3 rs26279 G/G versus A/A or A/G genotype was positively associated with cancer (ORβ€Š=β€Š2.71; 95% CI: 1.34–5.50). Similar associations were observed for PMS1 rs5742938 (GG versus AA or AG: ORβ€Š=β€Š1.73; 95% CI: 1.07–2.79) and MLH3 rs28756991 (AA or GA versus GG: ORβ€Š=β€Š2.07; 95% IC: 1.04–4.12). In Black individuals, however, no association between MMR polymorhisms and cancer risk was observed in individual SNP analysis. The interactions between MMR genes were evaluated using the model-based multifactor-dimensionality reduction approach, which showed a significant genetic interaction between SNPs in MSH2, MSH3 and PMS1 genes in Black and Mixed Ancestry subjects, respectively. The data also implies that pathogenesis of common polymorphisms in MMR genes is influenced by exposure to tobacco smoke. In conclusion, our findings suggest that common polymorphisms in MMR genes and/or their combined effects might be involved in the aetiology of oesophageal cancer
    • …
    corecore