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1 Introduction

Let G be a simple graph with # vertices. The adjacency matrix A = A(G) is the symmetric
matrix [@;],xn, where a;; = a;; = 1 if v;v; is an edge of G, otherwise a; = a; = 0. We call
det(Al — A) the characteristic polynomial of G, denoted by ¢(G; 1). Since A is symmetric,
its eigenvalues A1(G), A2(G), ..., 1,(G) are real, and we assume that 1;(G) > 1,(G) > --- >
An(G). We call p(G) = A1(G) the adjacency spectral radius of G.

The class of all graphs G whose largest (adjacency) eigenvalue Anax(G) is bounded
by 2 has been completely determined by Smith; see, for example, [1, 2]. Later, Hoff-
man [3], Cvetkovi¢ et al. [4] gave a nearly complete description of all graphs G with
2 < Amax(G) < V2 ++/5 (~ 2.0582). Their description was completed by Brouwer and
Neumaier [5]. And Belardo et al. [6] ordered graphs with spectral radius in the interval
(2,v2 ++/5). Then Woo and Neumaier [7] investigated the structure of graphs G with

2+ /5 < Amax(G) < %\/5 (~2.1312), Wang et al. [8] investigated the structure of graphs
whose largest eigenvalue is close to %\/5 In the paper [9], the first three bicyclic graphs
on order # in terms of their larger spectral radii were determined.

The graph obtained from a simple undirected graph by assigning an orientation to each
of its edges is referred to as the oriented graph. Let G° be an oriented graph with a vertex
set {v1,V2,...,V,} and an edge set E(G?). The skew-adjacency matrix S = S(G) = [s;jluxn
related to G is defined as:

i if there exists an edge with tail v; and head vj;
sij=1q -1 ifthere exists an edge with head v; and tail v;;
0, otherwise,

where 1 = /-1 (note that the definition is slightly different from the one of the normal
skew-adjacency matrix given by Adiga et al. [10]). Since S(G”) is a Hermitian matrix, the
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eigenvalues A1(G?), 12(G?),...,1,(G?) of S(G?) are all real numbers and thus can be ar-
ranged non-increase as

21(G7) 2 22(G%) = -+ = 24(G7).

The skew-spectral radius and the skew-characteristic polynomial of G° are defined respec-
tively as

p(67) = max{1a(G")

22(G%)

2n(G7))

> ooy

and
¢(G%; 1) =det(rL, - S(G7)).

We denote by D(G) the set of all the oriented graphs obtained from G by giving an ar-
bitrary orientation to each edge. Recently, much attention has been devoted to the skew-
adjacency matrix of an oriented graph. In 2009, Shader and So [11] investigated the spectra
of the skew-adjacency matrix of an oriented graph. And in 2010, Adiga et al. [10] discussed
the properties of the skew-energy of an oriented graph. In the papers [12, 13], all the coeffi-
cients of the skew-characteristic polynomial of G° in terms of G were interpreted. Cavers
et al. [14] discussed the graphs whose skew-adjacency matrices are all cospectral and the
relations between the matchings polynomial of a graph and the characteristic polynomi-
als of its adjacency and skew-adjacency matrices. In [15], the author established a relation
between p,(G?) and p(G). Also, the author gave some results on the skew-spectral radii of
G? and its oriented subgraphs. In the paper [16], the oriented graphs whose skew-spectral
radii do not exceed 2 were investigated. In 2013, Chen et al. [17] ordered all the oriented
unicyclic graphs with # vertices whose skew-spectral radii are bounded by 2.

A connected graph in which the number of edges equals the number of vertices plus one
is called a bicyclic graph. In this paper, we will determine all the oriented bicyclic graphs
whose skew-spectral radii do not exceed 2. The rest of the paper is organized as follows.
In Section 2, we introduce some notations and preliminary results. In Section 3, we give
some earlier results on the oriented graphs whose skew-spectral radii do not exceed 2. In
Section 4, we determine all the oriented bicyclic graphs whose skew-spectral radii do not
exceed 2.

2 Preliminaries
Let G = (V, E) be a simple graph with a vertex set V = V(G) = {v1, v2,...,v,} and e € E(G).
A graph H is called a subgraph of a graph G if V(H) € V(G) and E(H) € E(G). Further, H
is called an induced subgraph of G if two vertices of V(H) are adjacent in H if and only
if they are adjacent in G. Denote by G — U, where U € V(G), the graph obtained from G
by removing the vertices of U together with all edges incident to them. Denote by G — e
the subgraph obtained from G by deleting the edge e. We refer to [1, 18, 19] for more
terminology and notation not defined here. Certainly, each subgraph of an oriented graph
is referred to as an oriented graph and preserves the orientation of each edge.

Recall that the skew-adjacency matrix S(G”) of any oriented graph G° is Hermitian,
then the well-known interlacing theorem for Hermitian matrices applies equally well to
oriented graphs; see, for example, Theorem 4.3.8 of [19].
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Lemma 2.1 Let G° be an arbitrary oriented graph on n vertices and V' C V(G). Suppose
that |V'| = k. Then

2i(G7) = M(G7 = V') = ik (G7)  fori=1,2,...,n—k.

Let G° € ©(G) and W = ujuy - - - ugig,1 be a walk of G. The sign of W in G°, denoted
by sgn(W?), is defined by

81,282,3 * * * Sk—1,kSkk+1+

Let W = sy, 1 - - - uatq be the walk by inverting the order of the vertices along the walk W'.
Then one can find that

—sgn(W°) if kis odd;

W) =
sgn( ) sgn(W?) if k is even.

Obviously, for an even closed walk (that is to say uy,; = 1), we can simply refer to it as a
positive (or negative) even closed walk according to its sign, regardless of the order of its
vertices. Similarly, we can define a positive (or negative) even cycle.

We now list some results related to this paper.

Lemma 2.2 ([15], Theorem 2.1) Let G° be an arbitrary connected oriented graph. Denote
by p(G) the (adjacency) spectral radius of G. Then

Ps (GG) <p(G)
with equality if and only if G is bipartite and each cycle of G° is positive.

Lemma 2.3 ([13], Theorem 2.4, [15], Theorem 3.1) Let G° be an oriented graph and
¢(G?, L) be its skew-characteristic polynomial. Then

@ ¢(G"A)=2p(G" —ur) - Y $(G° —u-v,1)-2) sgn(C°)¢(G° - C,2),

veN (u) ueC

where the first summation is over all the vertices in N(u) and the second summation is over
all even cycles of G containing the vertex u.

(b) ¢(G°,2)=¢(G" —en) —¢(G° —u-v,2) -2 > sgn(C”)p(G" - C,2),

(u,v)eC

where e = uv and the summation is over all even cycles of G containing the edge e, and
sgn(C?) denotes the sign of the even cycle C°.

Lemma 2.4 ([12], A part of Theorem 2.5) Let G° be an oriented graph and ¢(G°, A) be its
skew-characteristic polynomial. Then

—¢G" = Y 6(G° -

veV(G)

where d%(,b(G", A) denotes the derivative of $(G°, A).
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3 Some earlier results on the oriented graphs whose skew-spectral radii do not
exceed 2
Before proving the main theorems, we introduce some earlier results. By Lemmas 2.2
and 2.3 or the papers [10, 11], for a given graph G containing a cycle C,,, we know that
the skew-spectral radius of G” is independent of its orientation if m is odd. Therefore we
will briefly write G instead of the normal notation G if each cycle of G is odd. If m is even,
then essentially there exist two orientations o; (the sign of the even cycle is positive) and
oy (the sign of the even cycle is negative) such that ps(G™) # p,(G°2). Henceforth we will
briefly write G~ (or G*) instead of G if the sign of each even cycle is negative (or positive).
In particular, G will also denote the oriented graph if G is a tree since ps(G”) = p(G) in this
case.
Firstly, we give a class of oriented graphs whose skew-spectral radii do not exceed 2.

Denote by Py 4, ., a pathlike graph, which is defined as follows: we first draw k (> 2)

paths Py, Py, ..., P, of orders Ij,l,,...,[; respectively along a line and put two isolated
vertices between each pair of those paths, then add edges between the two isolated vertices
and the nearest end vertices of such a pair of paths so that the four newly added edges form
acycle Cy, where [, [y > 0 and [; > 1fori=2,3,...,k—1. Then Py 4, , contains ZL L+
2k — 2 vertices. Notice that if /; =1 (i = 2,3,...,k — 1), the two end vertices of the path P,
are referred to as overlap; if /; = 0 (i = 0), the left (right) of the graph P, ;, ;. has only two
pendent vertices. Obviously, P; o = Kj 2, the star of order 3, and P;; = Cy. In general, Py ,,
Po 1,155 Poyy 1p,0 are all unicyclic graphs containing Cy, where [;, [, > 1. Meanwhile, Py, , 15,
Po i, 1y,135 Poiy 15,0 are all bicyclic graphs containing Cy, where 1, 15, /3 > 1.
Then we have the following.

Lemma 3.1 ([16]) Let Py 4,1, (k > 2) be a pathlike graph described as above. Then

'OS(Pl_l,lz ..... lk) = 2.
Moreover, 2 is an eigenvalue Ofplz,lzw,lk with multiplicity k -2 and ¢(Pp ;;2) = 4.

Now, we introduce more notations. Denote by Ty, 5, , the starlike tree with exactly one
vertex v of degree 3, and Ty, 5,1, — v = Py, U Py, U Py, where Py, is the path of order /; (i =
1,2,3).

Due to Smith, all undirected graphs whose (adjacency) spectral radii are bounded by 2
are completely determined as follows.

Lemma 3.2 ([2], or [1], Chapter 2.7.12) All undirected graphs whose spectral radii do not
exceed 2 are Cyy, Po a0, T2, T133, T1.2,5 and their subgraphs, where m > 3 and n > 5.

Consequently, combining with Lemma 2.2, the skew-spectral radius of each oriented
graph whose underlying graph is described as Lemma 3.2, regardless of the orientation of
the oriented cycle C7,, does not exceed 2.

Let C,, = viv - - - v,,11 be a cycle on m vertices and Py, Py, ..., P;,, be m paths with ver-
tices [y, Ly, ..., L, respectively (perhaps some of them are empty). Denote by Cf},’lz """ In the
unicyclic graph obtained from C,, by joining v; to a pendent vertex of P, fori=1,2,...,m.
For convenience, suppose without loss of generality that /; = max{/;:i=1,2,...,m}, [ > [,

. Hlosoli 11,02,..,11,0,..,0 ,
and write C,, >/ instead of the standard C,, > ifliy=lo=---=1,=0.
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Denote by 6, the undirected bicyclic graph obtained from paths P,, Py, P, by identi-
fying the three initial vertices and terminal vertices of them, where min{a, b,c} > 2 and at
most one of them is 2, and by ool;? (m > 1, p,q > 3) the undirected bicyclic graph obtained

from cycles C, and C, joined by a path P,,. A bicyclic graph containing 6, (or oo},

) is
called of 6-type (or co-type). The set of bicyclic graphs of -type (or co-type) is denoted
by Gy (or Goo). Furthermore, the subset of G (or Go,) containing 6, (or ook is denoted
bY gH (ﬂ, b; C) (Or goo(p) q; m))'

On Cjy-free oriented graphs, we have the following.

Lemma 3.3 ([16]) Let G° be an oriented graph and p,(G°) < 2. Suppose that G is Cy-free,
then G° is one of the graphs C3,, Py ,_ap (n > 5), 6%, (Cé’o’o’z)‘, (Cé’o’l’o’l)‘, (Cé’o’o‘o’l)‘, 0355
or their induced oriented subgraphs, where the orientation of C3, is arbitrary. For induced
even cycles C¢, Cg of 035 5, they satisfy sgn(C¢ ) = -1 and sgn(Cg) = 1.

A connected graph in which the number of edges equals the number of vertices is called
a unicyclic graph. For convenience, we write
U(m) = {G|G is a unicyclic graph containing the cycle C,}.

On oriented unicyclic graphs, we have the following.

Lemma 3.4 ([17]) Let G° be an oriented unicyclic graph and ps(G°) < 2. Then G° is one
of the graphs CT,, é%; (CH), (3, (CPM2Y), (C22), (CRO02), (CLOMoty-, (CLO0OL)-
and Py, , , or their induced oriented unicyclic subgraphs, where the orientation of Cy, is
arbitrary.

4 The oriented bicyclic graphs whose skew-spectral radii do not exceed 2
In this section, we determine all the oriented bicyclic graphs whose skew-spectral radii do
not exceed 2. Let
B, = {G”|G is a bicyclic graph and ps(G”) < 2},
By ={G7|G is a Cy-free bicyclic graph and p4(G?) < 2},
By, = {G”|G is a bicyclic graph containing C4 and ps(G?) < 2}.
The main purpose of this paper is to determine the set 3,. Obviously, By = By U By,. By
Lemma 3.3, we immediately have the following result on the set By;.

Theorem 4.1 By = {0555}, where sgn(C¢) = —1 and sgn(Cg) = 1 for induced even cycles
C¢, C§ of 0355

Now, we will determine the set B,,. Let

B35 = {G°|G° € By, and contain oof,;q (m>1,q>3)},

BY, = {G°|G° € By, and contain 0, (¢ > b > a > 2)}.
Obviously, By, = B35 U BS,. On the set 355, we have the following.

Theorem 4.2 B35 = {G°|G° is P 1y 0 (l; = 1,i = 1,2,3) or its induced oriented bicyclic
subgraphs}.

Proof We will complete the proof by considering following cases.
Casel.q =3.
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We consider the graph co’%? (m > 1). Obviously, co%? (m > 1) contains a unicyclic graph
Uy € U(3), but U, is not C? or its induced unicyclic graphs. By Lemma 3.4, we know
ps((00%3)7) > 2. Thus ps(G%) > 2 for G € Goo(4,3;m).

Case2.q>5.

If g # 6,8, then there exists a unicyclic graph U, € U(q) - C, in copd (m > 1). Ifg = 6, then

there exists a unicyclic graph Us € U(6) in cok® (m > 1), but Us is not any of the graphs

Cé,o,o,z, Cé’o’l’o’l or their induced unicyclic graphs. If g = 8, then there exists a unicyclic

graph Uy € U(8) in 0ot® (m > 1) but Uy is not Cé’o'o'o’l or its induced unicyclic graphs.
So, by Lemma 3.4, we also have ,os((oof,;q)") > 2 (g > 5). Therefore p(G”) > 2 for G €
Goo(4,q;m) (q = 5).

Case 3. q = 4.

The sign of each induced cycle Cj of G” must be negative. Furthermore, G° must be
P 1150 OF its induced oriented bicyclic subgraphs. Otherwise, G has an induced tree T
such that T contains a proper subgraph Py ;0. Hence ps(G?) > ps(Po,0) = 2. O

The rest of this manuscript is to determine the set 35,. Firstly, we have the following.

Lemma 4.1 Ifall the three cycles of 97, . are even, then there exists a cycle such that its sign
is positive.

Proof Suppose without loss of generality that sgn(67,) = sgn(f;,) = -1, we will show

sgn(0y,) = 1.

Since

sgn(67,) = sen(Pa) sgn(Py),

sgn(67,) = sgn(P,) sgn(P,).

Thus

sgn(@o‘:b) sgn(@ic) = (sgn(Pa))2 sgn(Py) sgn(P.)

= (-1)*tsgn(Py) sgn(P.) = 1.
So
sgn(Py) sgn(P) = (-1)"".
On the other hand,

sgn(67,) = sgn(Py) sgn(P)
= (-1)" sgn(Py) sgn(P,)

_ (_1)u+b—2
But we know a + b is even. Then

sgn(6y,) =1. 0
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Let G° be an oriented graph with the property
ps(G7) <2. (4.1)

The property (4.1) is hereditary because, as a direct consequence of Lemma 2.1, for any
induced subgraph H C G, H? also satisfies (4.1). The inheritance (hereditary) of property
(4.1) implies that there are minimal connected oriented graphs that do not obey (4.1); such
graphs are called forbidden oriented subgraphs.

Let vivy -« VpVpi1 - - - VbseaVi (¢ = b > 3) be the longest cycle in 64, and Pp = vivy - - - v,
P, = VyVps1 -+ Vpseav1. Denoted by Gélblzc """ Iolpn-lorea o the bicyclic graph obtained from
6,5,c by joining its vertex v; to a pendent vertex of P, with vertices [; (i=1,2,...,b+c—2),

where [; > 0, [; > [,. Moreover, if b = ¢, we will suppose I > Iy, 5.

Lemma 4.2 Let F; = 0,59°, F> = 0,35°, F5 = 0,90, Fy = 03300, F5 = 05"°, Fo =
922‘,4(})’,[(}),0,0,0, F; = 92;}2"2'0’2’0 and Fg = eg,i,é),o,o,o,o,o' Then F{ (i =1,2,...,8) are forbidden ori-
ented subgraphs on the property (4.1), where each subgraph C] of F{ (i=1,2,...,8) is neg-
ative. Also the subgraph C{ of F§ is negative.

Proof By Lemma 2.3, it is not difficult to know that
$(02554) = 9(Cys 1) =27
Thus, by Lemma 3.1, ¢(6533;2) = 0. And then p(65 3 3) = 2. Moreover, we have
P(F751) = p(Fr50) = A (055554) — p(Kypa5 ).
Then ¢(F7;2) = —4, and thus ps(F}) > 2. Also, we have
O(F551) = ¢(Fy52) = 2 (05535 1) — $(Cs ).
Then ¢(F5;2) = -2, and therefore py(F5) > 2.
Similarly, we have py(60334) = p5((0394°"°)7) = ps((O325 ")) = ps((OS’i’g'o’O‘o'o’O)”) =2
and p(F7) >2 (i=3,4,...,8).

In order to determine the set /35,, we will first consider the oriented graphs containing
05 4,4 0r 035  (c > 3). Combining with Lemma 4.2 and the fact that p,(G”) > 2 if the oriented
tree G° contains an arbitrary tree described in Lemma 3.2 as a proper subgraph, we have
the following result.

Lemma 4.3 Let G € Gy(2,4,4) and G, = 921:2;2’0‘0’0, Gy = 821,’2;1‘0'1’0, Gs = 9§§,£'°’1'° and
Gy = 0§i:i’0’1’0. If ps(G%) <2, then G° is one of the graphs G (i =1,2,3,4) or their induced
oriented bicyclic subgraphs, where each subgraph Cj of G (i =1,2,3,4) is negative.

Proof Obviously, the sign of Cg in 63, , must be positive. If G # 95};&""16, we know
ps(G%) >2 by Lemma 3.4.
Now, let G = 92}&""16. By Lemma 4.2, we know /; <1.
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Claim 1.1f [; =1, then G° is one of the graphs Gy, GJ or their induced oriented bicyclic
subgraphs, where each subgraph Cj of G and GJ is negative.

Obviously, we have /5 = [ = [g = 0. Otherwise, ps(G?) > 2 by Lemma 3.4. Suppose I3 > I5.
Then I3 < 3. Otherwise p(G”) > p(T12,6) > 2. Now, we consider the following two cases.

Casel.l3 =2 or 3.

Then 5 = 0. Otherwise ps(G?) > p(T1,3.4) > 2.

It is not difficult to know that ¢(GY;2) = 0. Thus ps(GY) = 2. Therefore G° is GY or its
induced oriented bicyclic subgraphs in this case.

Case?2.l3=1.

We can obtain that p;(G) = 2. Therefore G” is G§ or its induced oriented bicyclic sub-
graphs in this case.

Claim 2.1fl; = 0. Then G° is one of the graphs (92 ﬁ),o,o,o)g’ (922;:2’0’0’1)”, G, GJ or their
induced oriented bicyclic subgraphs, where each subgraph C] of the mentioned oriented
graphs is negative.

Firstly, we can suppose I, = max{ly,/s,1s5,l¢} > 1. It is easy to see that [, < 3, otherwise
ps(G%) = p(T13.4) > 2 by Lemma 3.2. Now, we consider the following three cases.

Casel.l, =3.

Then I3 = Is = [g = 0. Otherwise ps(G°) > 2 by Lemma 3.2. On the other hand,
,OS((QS, ’f’f'o’o’o)") = 2. Therefore G° is (92 fvf’o’o’o)“ or its induced oriented bicyclic subgraphs
in this case. Obviously, 92’2’2 000 is an induced subgraph of G;.

Case?2.l, =2.

Then /3 = [ = 0 and /5 < 2 by Lemma 3.2. Moreover, by Lemma 4.2, we know /5 <1.
Since ps(G7) = 2. Therefore G” is GY or its induced oriented bicyclic subgraphs in this
case.

Case3.l, =1.

Subcase 3.1. [g = 1.

Then I3 = I5 = 0. Since ps((QQi’g’o’O’l)") = 2. Therefore G° is (922,},’2’0’0'1)" or its induced
oriented bicyclic subgraphs in this case. Obviously, 63 ’4};2'0’0’1 is an induced subgraph of G,.

Subcase 3.2. lg = 0.

Then /3 <1 and /5 < 1. But we have p,(G}) = 2. Therefore G° is G} or its induced ori-
ented bicyclic subgraphs in this case.

Hence, we have completed the proof of this theorem. d

Now, we consider the oriented bicyclic graphs containing 655 . (c > 3). For the graph
Oupc = 033, we suppose P, = uupuz, Py = vivovs, P = wiwy -+ -w, and ug = vy = wy, ug =
vz = w,. Also, in 655 , we suppose that the cycle C{ is negative if ¢ is even and only the
cycle vivavsw,_; - - - wyvy is positive if ¢ is odd. Furthermore, let 773, —v =P UP; U Py and
P; = x1%5---x; (I > 0). Denoted by Gs is the graph obtained from 6533 by identifying u,
with x; (or v if [ = 0) of T1,. Suppose that Gg is the graph obtained from 6555 by joining
u; to a pendent vertex of P;, and Gy is the graph obtained from 653~ by joining u; to an
isolated vertex.

Lemma 4.4 Let G € Gy(3,3,¢) (c > 3) and ps(G”) < 2. Then G° is one of the graphs 635 ,
(c>4,c#5,7), GY (i=5,6,7) or the induced oriented bicyclic subgraphs of G} (i=5,6,7),
where the cycle Cj is negative if c is even and only one cycle C.,1 in each 03  is positive if
cisodd.
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Proof We will complete the proof by proving the following five claims.
Claim 1. py(035,) =2 (c > 3).
By Lemma 2.3, we have

¢(9§,3,c; ) )»(b( c-2,17 ) ¢(P;—3,1?)”)_¢(Pc_-2,o;)‘)'

Thus ¢(63 5 .;2) = 0 because of ¢(Pl’ ;2) =4 (l1,1, > 0). And then py(055 ) =2 (c > 3).

Claim 2.1f ¢ #3,5,7, then G° is one ofthe graphs 033, (¢>3,¢c#3,5,7).

Suppose that H is the graph obtained from 653 . by joining its one vertex to a pendent
vertex. Then we know H” has an induced subgraph (C;)?, where k = 5,7 or k > 9. Thus
0s(H?) > 2 and the result holds.

Claim 3.1f ¢ = 3, then G7 is GY or its induced oriented bicyclic subgraphs.

If ¢ = 3, then G° must be some oriented graph by joining a tree T to the vertex u; of 633 3.
By Lemma 3.4, we know G° can only be G or its induced oriented bicyclic subgraphs.
Now we will show p,(GZ) =2

Let Géy3y3 be the graph obtained from Gs by deleting its two pendent vertices. We show
by induction on [ that ,05((9“5,’3’3)") =2.1f [ = 0, then p((6553)7) = ps(6553) = 2. Suppose
now that / > 0 and the result is true for the order no more than /. Then we have

d((0555)731) = 20 ((0533) 3 1) — B ((0535) "5 1)

So ¢((9§f31‘3)“;2) =0 if [ = 0 because of (93‘}),3)(r = C;. Therefore ,05((9333)") =
Now, we will prove p4(GZ) = 2. Firstly, we have

$(G532) = 26((0555)"5%) = 20((0335)"3).

Then 2 is an eigenvalue of Gs.

Also, by Lemma 2.4, we have

$(Ggi2) = Y 6(G-vh)

veV(Gs)

Since p;(GZ —v) = 2 for each v € V(Gs), we know 2 is an eigenvalue of G5 with multi-
plicity 2. But A3(Gs) < 2, so we can confirm the result holds.

Claim 4.1f C = 5, then G° is G7 or its induced oriented bicyclic subgraphs.

In this case, G” must be some oriented graph by joining a path to the vertex u, of 655 ;.
By Lemma 3.4, we know G° can only be G7 or its induced oriented bicyclic subgraphs. To
confirm the result holds, we only need to show p,(GZ) = 2. In fact, similar to the proof of
Claim 3, we can show 2 is an eigenvalue of G¢ with multiplicity 2. And thus p,(G7) = 2.

Claim 5.1f ¢ =7, then G° is G or its induced oriented bicyclic subgraphs.

Similarly, we know the result holds. g

Theorem 4.3 B9, = {655,055 4, (054 0"""%%),085. (c = 4,¢ #5,7),G? (i = 1,2,...,7)
or their induced oriented bicyclic subgraphs}, where the cycle Cy is negative if ¢ is even and

only one cycle C.,; in each 035 . is positive if ¢ is odd.
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Proof Firstly, since 2 <a < b < c and G° containing C4, we know 2 <a <3,3 <b <4.
Furthermore, the radius of each graph mentioned in this theorem is 2. The discussion is
divided into three parts according to different cases of a and b.

Casel.a=2,b=3.

Subcase11l.c=3 orc=4.

By Lemma 4.2, we know G° must be 635 ; or 67 ,.

Subcase1.2.c¢ > 5.

Then pi(G”) > ps((C3")7) > 2.

Case2.a=2,b=4.

By Lemma 3.4 and Lemma 4.2, we know ¢ =4 or ¢ = 6.

Subcase 2.1. ¢ = 4.

By Lemma 4.3, G° must be one of the graphs GY (i =1,2,3,4) or their induced oriented
bicyclic subgraphs.

Subcase 2.2. c = 6.

By Lemma 4.2, G° must be (92 i:é),o,o,o,o,o)g or its induced oriented bicyclic subgraph.

Case3.a =3.

Then b = 3, otherwise G° does not contain Cy. By Lemma 4.4, G° must be 655 . (c > 3,
c¢#3,5,7), GY (i=5,6,7) or their induced oriented bicyclic subgraphs. O

Combining with Theorem 4.1, Theorem 4.2 and Theorem 4.3, we have the following
main result.

_ 0,1,0,0,0,0,0,0 i
Theorem 4.4 By = {0555, Py 1, 1. 0005330534, (056 )%,095, (c>4,c#5,7),G] (i =
1,2,...,7) or their induced oriented bicyclic subgraphs}, where the cycle Cj is negative if
is even and only one cycle C.,; in each 035 _ is positive if ¢ is odd.

By this theorem, we have the following.

Theorem 4.5 Let G° be an oriented bicyclic graph and ps(G°) < 2. Then G° is one of the
90100105 (502,0,0,00

graphs (0344 "), (040" ")°, 03, ¢ or their induced oriented bicyclic subgraphs.
Proof Of course, the radius of each graph mentioned in this theorem is less than 2. Obvi-
ously, by Theorem 4.4, G must contain 6, 44 or 0546 if ps(G”) < 2. Firstly, by taking some
direct calculations, we know ¢ (67, 5;2) = 1, and then ps(67, ) < 2.

Now suppose that G contains 6;44. By taking some direct calculations, we know
ps((0309°%°)7) = 2. Thus 4 = I = 0. Similarly, we have py((6354>*°)) = 2. Thus I, =
max{ly, l3,15,l¢} < 2.

Casel.l, =2.

Since ps((egﬁj'o"”")ﬂ) >2, ps((Og’if‘o'o’l)") > 2 and ps((Gg,;if’o’l’o)”) = 2. Thus G° must be
(92 ﬁ),o,o,o)g or its induced oriented bicyclic subgraphs in this case.

Case?2.l, =1.

Since ps((egijg’o’o’l)") =2 and ps((GS,i’i’O’O’O)“) = 2. Thus G° must be (932}:2’0’1’0)" or its
induced oriented bicyclic subgraphs in this case. O

By this theorem, we immediately obtain the following sharp lower bound on the skew-
spectral radii of oriented bicyclic graphs.

Corollary 4.1 Let G° be an oriented bicyclic graph on order n and n > 9. Then p,(G”) > 2.
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