133 research outputs found
Recommended from our members
Intron retention as a component of regulated gene expression programs
Intron retention has long been an exemplar of regulated splicing with case studies of individual events serving as models that provided key mechanistic insights into the process of splicing control. In organisms such as plants and budding yeast, intron retention is well understood as a major mechanism of gene expression regulation. In contrast, in mammalian systems, the extent and functional significance of intron retention have, until recently, remained greatly underappreciated. Technical challenges to the global detection and quantitation of transcripts with retained introns have often led to intron retention being overlooked or dismissed as “noise”. Now, however, with the wealth of information available from high-throughput deep sequencing, combined with focused computational and statistical analyses, we are able to distinguish clear intron retention patterns in various physiological and pathological contexts. Several recent studies have demonstrated intron retention as a central component of gene expression programs during normal development as well as in response to stress and disease. Furthermore, these studies revealed various ways in which intron retention regulates protein isoform production, RNA stability and translation efficiency, and rapid induction of expression via post-transcriptional splicing of retained introns. In this review, we highlight critical findings from these transcriptomic studies and discuss commonalties in the patterns prevalent in intron retention networks at the functional and regulatory levels.Work in the authors’ lab has been funded by Grants from the British Heart Foundation (PG/16/28/32123), the Wellcome Trust (092900) and the BBSRC (BB/J001457/1)
Dynamics of localization in a waveguide
This is a review of the dynamics of wave propagation through a disordered
N-mode waveguide in the localized regime. The basic quantities considered are
the Wigner-Smith and single-mode delay times, plus the time-dependent power
spectrum of a reflected pulse. The long-time dynamics is dominated by resonant
transmission over length scales much larger than the localization length. The
corresponding distribution of the Wigner-Smith delay times is the Laguerre
ensemble of random-matrix theory. In the power spectrum the resonances show up
as a 1/t^2 tail after N^2 scattering times. In the distribution of single-mode
delay times the resonances introduce a dynamic coherent backscattering effect,
that provides a way to distinguish localization from absorption.Comment: 18 pages including 8 figures; minor correction
Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins.
Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands.This work was supported by the Biotechnology and Biological Sciences Research Council [grant number BB/H004203/1 (to C.W.J.S.)]; the Wellcome Trust [grant number 092900 (to C.W.J.S.)]; the Boehringer Ingelheim Fond (to J.A.); the Medical Research Council [grant number MR/M026302/1 (to D.B.A. and D.E.V.P.)]; the Fundação de Amparo à Pesquisa do Estado de Minas Gerais [grant number MR/M026302/1 (to D.B.A. and D.E.V.P.)]; and the National Health and Medical Research Council CJ Martin Fellowship [grant number APP1072476 (to D.B.A.)]
A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones
Background: The three consensus elements at the 3' end of human introns-the branch point sequence, the polypyrimidine tract, and the 3' splice site AG dinucleotide-are usually closely spaced within the final 40 nucleotides of the intron. However, the branch point sequence and polypyrimidine tract of a few known alternatively spliced exons lie up to 400 nucleotides upstream of the 3' splice site. The extended regions between the distant branch points (dBPs) and their 3' splice site are marked by the absence of other AG dinucleotides. In many cases alternative splicing regulatory elements are located within this region.|Results: We have applied a simple algorithm, based on AG dinucleotide exclusion zones (AGEZ), to a large data set of verified human exons. We found a substantial number of exons with large AGEZs, which represent candidate dBP exons. We verified the importance of the predicted dBPs for splicing of some of these exons. This group of exons exhibits a higher than average prevalence of observed alternative splicing, and many of the exons are in genes with some human disease association.|Conclusion: The group of identified probable dBP exons are interesting first because they are likely to be alternatively spliced. Second, they are expected to be vulnerable to mutations within the entire extended AGEZ. Disruption of splicing of such exons, for example by mutations that lead to insertion of a new AG dinucleotide between the dBP and 3' splice site, could be readily understood even though the causative mutation might be remote from the conventional locations of splice site sequences.This work was funded by programme grant 059879 from the Wellcome Trust to C.W.J.S
Nanoelectromechanical coupling in fullerene peapods probed via resonant electrical transport experiments
Fullerene peapods, that is carbon nanotubes encapsulating fullerene
molecules, can offer enhanced functionality with respect to empty nanotubes.
However, the present incomplete understanding of how a nanotube is affected by
entrapped fullerenes is an obstacle for peapods to reach their full potential
in nanoscale electronic applications. Here, we investigate the effect of C60
fullerenes on electron transport via peapod quantum dots. Compared to empty
nanotubes, we find an abnormal temperature dependence of Coulomb blockade
oscillations, indicating the presence of a nanoelectromechanical coupling
between electronic states of the nanotube and mechanical vibrations of the
fullerenes. This provides a method to detect the C60 presence and to probe the
interplay between electrical and mechanical excitations in peapods, which thus
emerge as a new class of nanoelectromechanical systems.Comment: 7 pages, 3 figures. Published in Nature Communications. Free online
access to the published version until Sept 30th, 2010, see
http://www.nature.com/ncomms/journal/v1/n4/abs/ncomms1034.htm
Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process
Background: Causal networks based on the vector autoregressive (VAR) process are a promising statistical tool for modeling regulatory interactions in a cell. However, learning these networks is challenging due to the low sample size and high dimensionality of genomic data. Results: We present a novel and highly efficient approach to estimate a VAR network. This proceeds in two steps: (i) improved estimation of VAR regression coefficients using an analytic shrinkage approach, and (ii) subsequent model selection by testing the associated partial correlations. In simulations this approach outperformed for small sample size all other considered approaches in terms of true discovery rate (number of correctly identified edges relative to the significant edges). Moreover, the analysis of expression time series data from Arabidopsis thaliana resulted in a biologically sensible network. Conclusion: Statistical learning of large-scale VAR causal models can be done efficiently by the proposed procedure, even in the difficult data situations prevalent in genomics and proteomics. Availability: The method is implemented in R code that is available from the authors on request
Lattice Boltzmann simulations of soft matter systems
This article concerns numerical simulations of the dynamics of particles
immersed in a continuum solvent. As prototypical systems, we consider colloidal
dispersions of spherical particles and solutions of uncharged polymers. After a
brief explanation of the concept of hydrodynamic interactions, we give a
general overview over the various simulation methods that have been developed
to cope with the resulting computational problems. We then focus on the
approach we have developed, which couples a system of particles to a lattice
Boltzmann model representing the solvent degrees of freedom. The standard D3Q19
lattice Boltzmann model is derived and explained in depth, followed by a
detailed discussion of complementary methods for the coupling of solvent and
solute. Colloidal dispersions are best described in terms of extended particles
with appropriate boundary conditions at the surfaces, while particles with
internal degrees of freedom are easier to simulate as an arrangement of mass
points with frictional coupling to the solvent. In both cases, particular care
has been taken to simulate thermal fluctuations in a consistent way. The
usefulness of this methodology is illustrated by studies from our own research,
where the dynamics of colloidal and polymeric systems has been investigated in
both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures,
76 page
On the quest for selective constraints shaping the expressivity of the genes casting retropseudogenes in human
<p>Abstract</p> <p>Background</p> <p>Pseudogenes, the nonfunctional homologues of functional genes are now coming to light as important resources regarding the study of human protein evolution. Processed pseudogenes arising by reverse transcription and reinsertion can provide molecular record on the dynamics and evolution of genomes. Researches on the progenitors of human processed pseudogenes delved out their highly expressed and evolutionarily conserved characters. They are reported to be short and GC-poor indicating their high efficiency for retrotransposition. In this article we focused on their high expressivity and explored the factors contributing for that and their relevance in the milieu of protein sequence evolution.</p> <p>Results</p> <p>We here, analyzed the high expressivity of these genes configuring processed or retropseudogenes by their immense connectivity in protein-protein interaction network, an inclination towards alternative splicing mechanism, a lower rate of mRNA disintegration and a slower evolutionary rate. While the unusual trend of the upraised disorder in contrast with the high expressivity of the proteins encoded by processed pseudogene ancestors is accredited by a predominance of hub-protein encoding genes, a high propensity of repeat sequence containing genes, elevated protein stability and the functional constraint to perform the transcription regulatory jobs. Linear regression analysis demonstrates mRNA decay rate and protein intrinsic disorder as the influential factors controlling the expressivity of these retropseudogene ancestors while the latter one is found to have the most significant regulatory power.</p> <p>Conclusions</p> <p>Our findings imply that, the affluence of disordered regions elevating the network attachment to be involved in important cellular assignments and the stability in transcriptional level are acting as the prevailing forces behind the high expressivity of the human genes configuring processed pseudogenes.</p
Genomic structure and alternative splicing of murine R2B receptor protein tyrosine phosphatases (PTPκ, μ, ρ and PCP-2)
BACKGROUND: Four genes designated as PTPRK (PTPκ), PTPRL/U (PCP-2), PTPRM (PTPμ) and PTPRT (PTPρ) code for a subfamily (type R2B) of receptor protein tyrosine phosphatases (RPTPs) uniquely characterized by the presence of an N-terminal MAM domain. These transmembrane molecules have been implicated in homophilic cell adhesion. In the human, the PTPRK gene is located on chromosome 6, PTPRL/U on 1, PTPRM on 18 and PTPRT on 20. In the mouse, the four genes ptprk, ptprl, ptprm and ptprt are located in syntenic regions of chromosomes 10, 4, 17 and 2, respectively. RESULTS: The genomic organization of murine R2B RPTP genes is described. The four genes varied greatly in size ranging from ~64 kb to ~1 Mb, primarily due to proportional differences in intron lengths. Although there were also minor variations in exon length, the number of exons and the phases of exon/intron junctions were highly conserved. In situ hybridization with digoxigenin-labeled cRNA probes was used to localize each of the four R2B transcripts to specific cell types within the murine central nervous system. Phylogenetic analysis of complete sequences indicated that PTPρ and PTPμ were most closely related, followed by PTPκ. The most distant family member was PCP-2. Alignment of RPTP polypeptide sequences predicted putative alternatively spliced exons. PCR experiments revealed that five of these exons were alternatively spliced, and that each of the four phosphatases incorporated them differently. The greatest variability in genomic organization and the majority of alternatively spliced exons were observed in the juxtamembrane domain, a region critical for the regulation of signal transduction. CONCLUSIONS: Comparison of the four R2B RPTP genes revealed virtually identical principles of genomic organization, despite great disparities in gene size due to variations in intron length. Although subtle differences in exon length were also observed, it is likely that functional differences among these genes arise from the specific combinations of exons generated by alternative splicing
- …