94 research outputs found

    Enhancement of sp(3)-bonding in high-bias-voltage grown diamond-like carbon thin films studied by x-ray absorption and photoemission spectroscopy

    Get PDF
    [[abstract]]X-ray absorption near-edge structure (XANES) and valence-band photoemission spectroscopy (VB-PES) were used to elucidate the electronic and mechanical properties of diamond-like carbon (DLC) thin films deposited by the plasma-enhanced chemical vapour deposition method at various bias voltages (Vb) using a C2H2 vapour precursor in an Ar+ atmosphere. The increase of Vb is found to increase and decrease the contents of sp3- and sp2-bonded carbon atoms, respectively, i.e. the films become more diamond-like. The Young's modulus measurements show increases with the increase of the presence of sp3-bonded carbon atoms in the structure of the DLC films.[[notice]]補正完

    The Therapeutic Implications of Plasticity of the Cancer Stem Cell Phenotype

    Get PDF
    The cancer stem cell hypothesis suggests that tumors contain a small population of cancer cells that have the ability to undergo symmetric self-renewing cell division. In tumors that follow this model, cancer stem cells produce various kinds of specified precursors that divide a limited number of times before terminally differentiating or undergoing apoptosis. As cells within the tumor mature, they become progressively more restricted in the cell types to which they can give rise. However, in some tumor types, the presence of certain extra- or intracellular signals can induce committed cancer progenitors to revert to a multipotential cancer stem cell state. In this paper, we design a novel mathematical model to investigate the dynamics of tumor progression in such situations, and study the implications of a reversible cancer stem cell phenotype for therapeutic interventions. We find that higher levels of dedifferentiation substantially reduce the effectiveness of therapy directed at cancer stem cells by leading to higher rates of resistance. We conclude that plasticity of the cancer stem cell phenotype is an important determinant of the prognosis of tumors. This model represents the first mathematical investigation of this tumor trait and contributes to a quantitative understanding of cancer

    The Effect of Thermal Reduction on the Photoluminescence and Electronic Structures of Graphene Oxides

    Get PDF
    [[abstract]]Electronic structures of graphene oxide (GO) and hydro-thermally reduced graphene oxides (rGOs)processed at low temperatures (120–1806C) were studied using X-ray absorption near-edge structure XANES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). C K-edge XANES spectra of rGOs reveal that thermal reduction restores C 5 C sp2 bonds and removes some of the oxygen and hydroxyl groups of GO, which initiates the evolution of carbonaceous species. The combination of C K-edge XANES and Ka XES spectra shows that the overlapping p and p* orbitals in rGOs and GO are similar to that of highly ordered pyrolytic graphite (HOPG), which has no band-gap. C Ka RIXS spectra provide evidence that thermal reduction changes the density of states (DOSs) that is generated in the p-region and/or in the gap between the p and p* levels of the GO and rGOs. Two-dimensional C Ka RIXS mapping of the heavy reduction of rGOs further confirms that the residual oxygen and/or oxygen-containing functional groups modify the p and s features, which are dispersed by the photon excitation energy. The dispersion behavior near the K point is approximately linear and differs from the parabolic-like dispersion observed in HOPG.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]電子版[[countrycodes]]GB

    Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and EmissionSpectroscopy Study

    Get PDF
    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements

    Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number

    Get PDF
    Elevated basal serum tryptase levels are present in 4-6% of the general population, but the cause and relevance of such increases are unknown. Previously, we described subjects with dominantly inherited elevated basal serum tryptase levels associated with multisystem complaints including cutaneous flushing and pruritus, dysautonomia, functional gastrointestinal symptoms, chronic pain, and connective tissue abnormalities, including joint hypermobility. Here we report the identification of germline duplications and triplications in the TPSAB1 gene encoding α-tryptase that segregate with inherited increases in basal serum tryptase levels in 35 families presenting with associated multisystem complaints. Individuals harboring alleles encoding three copies of α-tryptase had higher basal serum levels of tryptase and were more symptomatic than those with alleles encoding two copies, suggesting a gene-dose effect. Further, we found in two additional cohorts (172 individuals) that elevated basal serum tryptase levels were exclusively associated with duplication of α-tryptase-encoding sequence in TPSAB1, and affected individuals reported symptom complexes seen in our initial familial cohort. Thus, our findings link duplications in TPSAB1 with irritable bowel syndrome, cutaneous complaints, connective tissue abnormalities, and dysautonomia

    SEPTIN12 Genetic Variants Confer Susceptibility to Teratozoospermia

    Get PDF
    It is estimated that 10–15% of couples are infertile and male factors account for about half of these cases. With the advent of intracytoplasmic sperm injection (ICSI), many infertile men have been able to father offspring. However, teratozoospermia still remains a big challenge to tackle. Septins belong to a family of cytoskeletal proteins with GTPase activity and are involved in various biological processes e.g. morphogenesis, compartmentalization, apoptosis and cytokinesis. SEPTIN12, identified by c-DNA microarray analysis of infertile men, is exclusively expressed in the post meiotic male germ cells. Septin12+/+/Septin12+/− chimeric mice have multiple reproductive defects including the presence of immature sperm in the semen, and sperm with bent neck (defect of the annulus) and nuclear DNA damage. These facts make SEPTIN12 a potential sterile gene in humans. In this study, we sequenced the entire coding region of SEPTIN12 in infertile men (n = 160) and fertile controls (n = 200) and identified ten variants. Among them is the c.474 G>A variant within exon 5 that encodes part of the GTP binding domain. The variant creates a novel splice donor site that causes skipping of a portion of exon 5, resulting in a truncated protein lacking the C-terminal half of SEPTIN12. Most individuals homozygous for the c.474 A allele had teratozoospermia (abnormal sperm <14%) and their sperm showed bent tail and de-condensed nucleus with significant DNA damage. Ex vivo experiment showed truncated SEPT12 inhibits filament formation in a dose-dependent manner. This study provides the first causal link between SEPTIN12 genetic variant and male infertility with distinctive sperm pathology. Our finding also suggests vital roles of SEPT12 in sperm nuclear integrity and tail development

    Viral, bacterial, and fungal infections of the oral mucosa:Types, incidence, predisposing factors, diagnostic algorithms, and management

    Get PDF
    corecore