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The electronic properties of amorphous carbon nitride were studied by x-ray-absorption near-edge
structure �XANES� and valence-band photoelectron spectroscopy �PES�. The nitrogen incorporation
was found to induce graphitization, as evidenced by an increase of the sp2 cluster in C and N K-edge
XANES spectra. The structure is found to be similar to pyridine. Hybridized C–N bond lengths were
determined from the position of the �* resonance of XANES spectra and the obtained results
suggest sp2 hybridization. A valence-band PES spectrum showed that the p-� band became more
intense than the p-� band upon higher at. % nitrogen addition, which confirmed the role played by
the � bonds in controlling the electronic structure of a-CNx films. © 2005 American Institute of
Physics. �DOI: 10.1063/1.1994933�

I. INTRODUCTION

Motivated by the theoretical work of Liu and Cohen,1

proposing a hypothetical compound �-C3N4 with a bulk
modulus greater than that of a diamond, many attempts have
been made in order to obtain carbon nitride with excellent
mechanical properties. In spite of the lack of success in
growing continuous films of the �-C3N4 phase, it has been
found that amorphous carbon nitride �a-CNx� presents attrac-
tive properties such as high hardness, low friction coeffi-
cient, and chemical inertness.2 Different diffraction tech-
niques have been used to characterize a-CNx films. Yet, the
atomic structure of amorphous carbon nitride is still very
poorly known. This is mainly due to the rich variety of pos-
sible local environments and the lack of long-range order.
Among the different techniques, the most promising one for
the study of a-CNx films is x-ray-absorption near-edge struc-
ture �XANES� spectroscopy. Very few reports3–5 have been
published on the characterization of a-CNx films that make
use of XANES spectroscopy and/or valence-band photoelec-
tron spectroscopy �PES�. In this work we have used C and N
K-edge XANES and valence-band PES spectra to study the
electronic properties of a-CNx thin films deposited by pulsed
laser deposition �PLD�.

II. EXPERIMENTAL DETAILS

The a-CNx thin films were deposited on a Si �100� sub-
strate at different nitrogen pressures by the PLD method.
Details of the sample preparation are given elsewhere.6 The
XANES spectra of C and N K-edge spectra were performed
using the high-energy spherical grating monochromator
�HSGM� beam line, whereas the valence-band PES spectra
were performed using the low-energy spherical grating

monochromator �LSGM� beam line with an electron-beam
energy of 1.5 GeV and a maximum stored current of
200 mA at the National Synchrotron Radiation Research
Center �NSRRC�, Hsinchu, Taiwan. The XANES data of the
C K edge were collected in the total yield mode by recording
the sample drain current mode whereas the N K edge in the
fluorescence mode using a seven-element Ge detector. Fol-
lowing preedge background subtraction, the spectra were
normalized using the incident-beam intensity I0 and by keep-
ing the area under the spectra in the energy range between
315 and 330 eV for the C K edge and 440–455 eV �not
shown in figure� for the N K edge fixed. Valence-band PES
spectra were obtained at an excitation of 100 eV having the
typical resolution of 0.05–0.10 eV. The base pressure of
�5�10−10 Torr was used during the measurements, which
has an EAC-125 hemispherical electron energy analyzer. The
samples were cleaned by repeated cycles of argon-ion bom-
bardment before the measurements. All measurements of
XANES as well as valence-band PES were taken at room
temperature.

III. RESULTS AND DISCUSSION

The XANES spectra of C and N K edges of an a-CNx

film are presented in Figs. 1 and 2, respectively. The graphite
spectra are also plotted with C K-edge XANES spectra in
Fig. 1�a� as a reference. In the C K-edge XANES spectra two
prominent peaks at �285.3�±0.1� and �286.8 eV and a
shoulder �283.8 eV are observed in the �* region. This �*

region is clearly shown in the left inset of Fig. 1�a�, after
subtracting a Gaussian line, within the range of 281–289 eV.
The peak at �283.8 eV is quite prominent �see left inset of
Fig. 1�a�� at low nitrogen concentration �sample No. C14�
and the peak position is gradually shifted towards higher
energies with an increase of nitrogen concentration. The peak
maximum at about 285.5 eV corresponds to the lowest-lying
state of � symmetry �0, near Q in the Brilloun zone of
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graphite.7 The �* antibonding state or white band for graph-
ite is located at 285.3 eV and it originates from the out-of-
plane bonds in the sp2 bonding configuration.8 The peak at
about �284.0 eV �prepeak� is also found at the C K edge of
a natural diamond, due to the presence of sp2-bonded
carbon.8 Apart from the above two peaks at 284.0�±0.2� and

285.2�±0.1� eV representing the graphite structure3 of the
nitrogenated samples, another peak with �* character �1s
→�*�e2u� transition3� similar to pyridine �CvN�3,7 appears
at 286.8 eV. For a better understanding of the C K edge, the
�* peak is decomposed into three peaks within the region of

FIG. 1. �a� Normalized C K-edge absorption spectra of the a-CNx films. The
inset shows the �* region after subtraction using a Gaussian line and sp2

intensity variation with nitrogen content. �b� Decomposed �* region of the
C K edge into three peaks and their intensity variation with nitrogen content.

FIG. 2. �a� Normalized N K-edge absorption spectra of the a-CNx films. The
inset shows the �* region after subtraction using a Gaussian line and sp2

intensity variation with nitrogen content. �b� Decomposed �* region of the
N K edge into three peaks and their intensity variation with nitrogen content.
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281–289 eV. The decomposed fitted results are shown in
Fig. 1�b�. These results show that the intensity of the peak at
286.8 eV �C3� assigned as pyridinelike �CvN� is increasing
with an increase of nitrogen concentration, whereas the sum-
mation of 284.0�±0.2� eV �C1� and 285.2�±0.1� eV �C2�
peak intensities assigned as graphite structure decreases in
the film structure, as shown in the inset of Fig. 1�b�. The
whole sp2 intensity �see the inset of Fig. 1�a��, obtained from
integrating within the range of 281–289 eV after subtracting
a Gaussian line mentioned above, increases with nitrogen
concentration. In the �* region of the C K edge, wider but
significant peaks within the range of 291.0–292.8 eV �cen-
tered at �291.9 eV� and 293–308 eV �centered at
�295.8 eV� are observed �marked by an arrow and a vertical
line, respectively� and they are assigned as �* �CvC� and
�* �C–N and CvN� bonds, respectively.5,7

In the case of the N K-edge spectrum, Fig. 2�a� shows a
sharp 1s→�* resonance at �399.5 eV �N2�, with two other
peaks on either sides, at 398.3 eV �N1� and 400.8�±0.3� eV
�N3�, which are clearly shown in Fig. 2�b� after decomposi-
tion into three peaks. This �* range is shown in the left inset
of Fig. 1�a� after subtracting a Gaussian line. The presence of
three peaks in the �* region are three different chemical
environments, which are generally observed in carbon nitride
thin films.9,10 The general shapes of the N K-edge spectra are
the same for all CNx films. The relative intensities of the
different features, however, differ depending on N at. %
presence in the film structure. The sharpness of the peak at
399.5 eV �N2� suggests that it originates from a well-defined
structure, known as the nitrile structure. Since the nitrile
bond predominantly has � character, this peak appears
strong in the �* region and its intensity is increasing with N
at. % �see the inset of Fig. 2�b��. Furthermore, the spectrum
of N1 centered at 398.5 eV corresponds to pyridinelike N.
Regarding the peak at �400.8 eV �N3�, this is assigned to N
in substitutional graphite sites in agreement with many
authors.10 The right inset in Fig. 2�a� presents the intensity of
the �* of the N K edge, as obtained from integrating the area
within the range of 396–403 eV. It increases and then satu-
rates at a higher nitrogen content. This can be explained by a
transition from nonplanar to planar nitrogen bonding geom-
etry when the composition of one nitrogen atom per ring is
approached.11 It is observed that the intensity of the �* of the
C K edge increases with nitrogen content �see right inset of
Fig. 1�a��, which implies that the formation of an a-CNx film
depends predominantly on C as well as N. In the �* region of
the N K edge, a 1s→�* transition is observed as a broad
feature centered at �407 eV which is a superposition of
graphitelike and pyridinelike nitrogen structures.10

There is abundant theoretical and experimental evi-
dences of a correlation between �* resonance energy �� rela-
tive to the ionization potential �IP�, and bond length ���

=E�−IP�,12 where E� is the �* resonance position in eV. To
determine the C–N bond lengths, we have used the relation,
R=1.33 Å− �0.011 Å/eV���, which is an interpolation of
the experimental data on small molecules collected by
Stöhr.12 The average C–N bond length are determined from

the position of the maximum of the �* resonance and is
1.36±0.01 Å. The uncertainty margin in these bond lengths
is due to the uncertainty in interpolating the formula given
above. This bond length suggests predominant sp2 hybridiza-
tion because expected sp2-hybridized C–N bonds range from
1.40 Å �three carbon neighbors� to 1.33 Å �two carbon
neighbors�, whereas the sp3-hybridized C–N bonds are
1.47 Å.

Figure 3 shows the valence-band PES spectra of films
with different at. % of nitrogen ranging from 4- to 17-at. %
N. They exhibit a very smooth shape, typical of amorphous
materials, and display basically a prominent peak at about
7.0 eV and a shoulder near 4.6 eV that becomes more promi-
nent in higher nitrogen content films. These two peaks are
related to the p-� and p-� contributions to the density of
states �DOS�, respectively.13,14 The intensity of the valence-
band PES is gradually decreasing with nitrogen content, as
clearly observed in Fig. 3 �below�.

In order to understand the role of nitrogen in controlling
the electronic structure, the valence-band spectra are decom-
posed into five peaks after subtracting a Gaussian line, as
shown in the right column of Fig. 3 �above�. These peaks are
p-� �peak I�, p-� �peak II�, a mixture of s and p states �peak
III�, and s �peak IV� bands of carbon with positions of about
�4.6�±0.1�, �7.0�±0.2�, �9.6�±1�, and 13.4�±0.2� eV,
respectively.13 The peak at �16.8�±0.2� eV �peak V� is a
nitrogen-based polymer, as assigned by Bhattacharyya
et al.13 It is clearly observed that with nitrogen incorporation

FIG. 3. Valence-band photoelectron spectroscopy �PES� with a Gaussian
line for subtraction and decomposed into different peaks. Below shows the
normalized spectra and inset �� /�� intensity ratio with nitrogen content.
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the intensity of p-� contribution is increasing, which implies
the formation of larger �-bonded clusters, and a larger defect
density. The �� /�� intensity ratios were obtained from inte-
grating the area of peaks I and II and they increase with
nitrogen content as shown in the right inset of Fig. 3 �below�,
indicating that the carbon structure is becoming more gra-
phitic.

IV. CONCLUSION

XANES spectroscopy is used to interpret the plausible
electronic and bonding structures from the C and N K edges
of a-CNx thin films. The contribution from CN bonds and
nitrogen in the CNx films has been separated from the graph-
ite structure. This structure is found to be similar to pyridine.
Valence-band PES shows the effect of nitrogen on the spec-
tral shape of the DOS, in particular, the sensitivity of the
p-� DOS to the presence of nitrogen. It confirms the role
played by the � bonds in controlling the electronic structure
of a-CNx. The increase of intensity of the p-� with increas-
ing nitrogen content indicates an increase in the defect den-
sity and size of the graphitic islands formed by the clustering
of � states in aromatic rings.
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