26 research outputs found

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    The metal ion theory of ageing: dietary target hazard quotients beyond radicals

    Get PDF
    Numerous theories of ageing exist and many are interconnected when viewed through a modern integrative biology perspective. Diet provides a link to a large number of the theories that prevail at the molecular levels. In particular, metal ions form key elements of the radical theory along with having established roles in several age-related neurodegenerative disorders. Lifetime exposure to metals has been linked to ageing by contributions to oxidative stress and neurodegenerative disorders. As many foodstuffs contain high levels and diverse profiles of metals, their cumulative effect on ageing warrants investigation. The cumulative level of concern from environmental exposure can be expressed as a dimensionless index of target hazard quotient (THQ) or for known carcinogens, the target cancer risk (TR). This paper posits that a quantifiable relationship exists between ageing and level of concern resulting from cumulated metal exposure; and that this relationship can be used to develop an ageing-related index of concern from chronic metal ion exposure. As individual differences may facilitate or moderate this cumulated exposure, the potential influence on ageing or on the development of neurodegenerative disorders should be included into the model
    corecore