23 research outputs found

    Influence of fly ash blending on hydration and physical behavior of Belite-Alite-Ye'elimite cements

    Get PDF
    A cement powder, composed of belite, alite and ye’elimite, was blended with 0, 15 and 30 wt% of fly ash and the resulting lended cements were further characterized. During hydration, the presence of fly ash caused the partial inhibition of both AFt degradation and belite reactivity, even after 180 days. The compressive strength of the corresponding mortars increased by increasing the fly ash content (68, 73 and 82 MPa for mortars with 0, 15 and 30 wt% of fly ash, respectively, at 180 curing days), mainly due to the diminishing porosity and pore size values. Although pozzolanic reaction has not been directly proved there are indirect evidences.This work is part of the Ph.D. of D. Londono-Zuluaga funded by Beca Colciencias 646—Doctorado en el exterior and Enlaza Mundos 2013 program grant. Cement and Building materials group (CEMATCO) from National University of Colombia is acknowledged for providing the calorimetric measurements. Funding from Spanish MINECO BIA2017-82391-R and I3 (IEDI-2016-0079) grants, co-funded by FEDER, are acknowledged

    Editorial

    No full text

    Nondestructive and on-line monitoring of tablets using light-induced fluorescence technology

    No full text
    A system using light-induced fluorescence (LIF) technology was developed for rapid and nondestructive analysis of active pharmaceutical ingredients on tablet surfaces. Nonhomogenous tablets with defined layer of active ingredients were made by 3-Dimensional Printing technology to determine penetration depths of the light source and the resultant fluorescence responses. The LIF method of analysis showed penetration to depths of up to 3 mm into tablets. A correlation between LIF signals from analysis of tablet surfaces and the total drug content of the respective tablets was established. This method of surface analysis was verified with UV spectrometric methods for the total drug content of each respective tablet. The results from a small sample population of tablets made from both homogeneous and nonhomogeneous powder mixtures established good correlation between LIF surface monitoring and total tablet content. The use of on-line monitoring of the individual tablet for surface content demonstrated consistent LIF profiles from simulated production rates up to 3000 tablets a minute. The instrument was also field tested successfully on a tablet analyzer
    corecore