334 research outputs found

    The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    Get PDF
    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecXHs) can interact with the H. seropedicae RecA protein (RecAHs) and that RecAHs possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecXHs inhibited 90% of the RecAHs DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecAHs. RecAHs ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecXHs was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecXHs protein negatively modulates the RecAHs activities by protein-protein interactions and also by DNA-protein interactions

    ‘Special agents’ trigger social waves in giant honeybees (Apis dorsata)

    Get PDF
    Giant honeybees (Apis dorsata) nest in the open and have therefore evolved a variety of defence strategies. Against predatory wasps, they produce highly coordinated Mexican wavelike cascades termed ‘shimmering’, whereby hundreds of bees flip their abdomens upwards. Although it is well known that shimmering commences at distinct spots on the nest surface, it is still unclear how shimmering is generated. In this study, colonies were exposed to living tethered wasps that were moved in front of the experimental nest. Temporal and spatial patterns of shimmering were investigated in and after the presence of the wasp. The numbers and locations of bees that participated in the shimmering were assessed, and those bees that triggered the waves were identified. The findings reveal that the position of identified trigger cohorts did not reflect the experimental path of the tethered wasp. Instead, the trigger centres were primarily arranged in the close periphery of the mouth zone of the nest, around those parts where the main locomotory activity occurs. This favours the ‘special-agents’ hypothesis that suggest that groups of specialized bees initiate the shimmering

    Glycosaminoglycans and Sialylated Glycans Sequentially Facilitate Merkel Cell Polyomavirus Infectious Entry

    Get PDF
    Merkel cell polyomavirus (MCV or MCPyV) appears to be a causal factor in the development of Merkel cell carcinoma, a rare but highly lethal form of skin cancer. Although recent reports indicate that MCV virions are commonly shed from apparently healthy human skin, the precise cellular tropism of the virus in healthy subjects remains unclear. To begin to explore this question, we set out to identify the cellular receptors or co-receptors required for the infectious entry of MCV. Although several previously studied polyomavirus species have been shown to bind to cell surface sialic acid residues associated with glycolipids or glycoproteins, we found that sialylated glycans are not required for initial attachment of MCV virions to cultured human cell lines. Instead, glycosaminoglycans (GAGs), such as heparan sulfate (HS) and chondroitin sulfate (CS), serve as initial attachment receptors during the MCV infectious entry process. Using cell lines deficient in GAG biosynthesis, we found that N-sulfated and/or 6-O-sulfated forms of HS mediate infectious entry of MCV reporter vectors, while CS appears to be dispensable. Intriguingly, although cell lines deficient in sialylated glycans readily bind MCV capsids, the cells are highly resistant to MCV reporter vector-mediated gene transduction. This suggests that sialylated glycans play a post-attachment role in the infectious entry process. Results observed using MCV reporter vectors were confirmed using a novel system for infectious propagation of native MCV virions. Taken together, the findings suggest a model in which MCV infectious entry occurs via initial cell binding mediated primarily by HS, followed by secondary interactions with a sialylated entry co-factor. The study should facilitate the development of inhibitors of MCV infection and help shed light on the infectious entry pathways and cellular tropism of the virus

    CCAAT/enhancer binding proteins in normal mammary development and breast cancer

    Get PDF
    CCAAT/enhancer binding proteins (C/EBPs) are a family of leucine zipper, transcription factors that bind to DNA as homodimers and heterodimers. They regulate cellular proliferation, differentiation and apoptosis in the mammary gland. Multiple protein isoforms, including truncated, dominant negatives, are generated by translation of the C/EBPβ transcript or via proteolytic cleavage of the full-length C/EBPβ protein. Gene deletion of individual C/EBP family members has demonstrated an essential role for C/EBPβ in normal mammary development, while transgenic and overexpression studies provide evidence that the dominant-negative C/EBPβ-liver-enriched inhibitory protein isoform induces proliferation in mammary epithelial cells. Mounting evidence suggests that alterations in the ratio of the C/EBPβ-liver-enriched inhibitory protein isoform and the C/EBPβ-liver-enriched activating protein isoform may play a role in the development of breast cancer. This review will consequently focus on C/EBP actions in normal mammary development and on the emerging data that supports a role in breast cancer

    Impact of Schistosome Infection on Plasmodium falciparum Malariometric Indices and Immune Correlates in School Age Children in Burma Valley, Zimbabwe

    Get PDF
    A group of children aged 6–17 years was recruited and followed up for 12 months to study the impact of schistosome infection on malaria parasite prevalence, density, distribution and anemia. Levels of cytokines, malaria specific antibodies in plasma and parasite growth inhibition capacities were assessed. Baseline results suggested an increased prevalence of malaria parasites in children co-infected with schistosomiasis (31%) compared to children infected with malaria only (25%) (p = 0.064). Moreover, children co-infected with schistosomes and malaria had higher sexual stage geometric mean malaria parasite density (189 gametocytes/µl) than children infected with malaria only (73/µl gametocytes) (p = 0.043). In addition, a larger percentage of co-infected children (57%) had gametocytes as observed by microscopy compared to the malaria only infected children (36%) (p = 0.06). There was no difference between the two groups in terms of the prevalence of anemia, which was approximately 64% in both groups (p = 0.9). Plasma from malaria-infected children exhibited higher malaria antibody activity compared to the controls (p = 0.001) but was not different between malaria and schistosome plus malaria infected groups (p = 0.44) and malaria parasite growth inhibition activity at baseline was higher in the malaria-only infected group of children than in the co-infected group though not reaching statistical significance (p = 0.5). Higher prevalence and higher mean gametocyte density in the peripheral blood may have implications in malaria transmission dynamics during co-infection with helminths

    Multimodal Management of Atrophic Acne Scarring in the Aging Face

    Get PDF
    Atrophic facial acne scarring is a widely prevalent condition that can have a negative impact on a patient’s quality of life. The appearance of these scars is often worsened by the normal effects of aging. A number of options are available for the treatment of acne scarring, including chemical peeling, dermabrasion, ablative or nonablative laser resurfacing, dermal fillers, and surgical techniques such as subcision or punch excision. Depending on the type and extent of scarring, a multimodal approach is generally necessary to provide satisfactory results. Resurfacing techniques correct surface irregularities, long-lasting dermal fillers address the volume loss resulting from acne, and sub-superficial musculoaponeurotic system (SMAS) face-lift procedures counter the soft tissue laxity and ptosis associated with aging. This article briefly reviews the evolution of individual approaches to treating atrophic acne scarring, followed by case examples illustrating results that can be achieved using a multimodal approach. Representative cases from patients in their 30s, 40s, and 50s are presented. In the author’s clinical practice, multimodal approaches incorporating fractionated laser, injectable poly-l-lactic acid, and sub-SMAS face-lift procedures have achieved optimal aesthetic outcomes, high patient satisfaction, and durability of aesthetic effect over time

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic

    Fluctuation-Driven Flocking Movement in Three Dimensions and Scale-Free Correlation

    Get PDF
    Recent advances in the study of flocking behavior have permitted more sophisticated analyses than previously possible. The concepts of “topological distances” and “scale-free correlations” are important developments that have contributed to this improvement. These concepts require us to reconsider the notion of a neighborhood when applied to theoretical models. Previous work has assumed that individuals interact with neighbors within a certain radius (called the “metric distance”). However, other work has shown that, assuming topological interactions, starlings interact on average with the six or seven nearest neighbors within a flock. Accounting for this observation, we previously proposed a metric-topological interaction model in two dimensions. The goal of our model was to unite these two interaction components, the metric distance and the topological distance, into one rule. In our previous study, we demonstrated that the metric-topological interaction model could explain a real bird flocking phenomenon called scale-free correlation, which was first reported by Cavagna et al. In this study, we extended our model to three dimensions while also accounting for variations in speed. This three-dimensional metric-topological interaction model displayed scale-free correlation for velocity and orientation. Finally, we introduced an additional new feature of the model, namely, that a flock can store and release its fluctuations

    Comparison of the force exerted by hippocampal and DRG growth cones

    Get PDF
    Mechanical properties such as force generation are fundamental for neuronal motility, development and regeneration. We used optical tweezers to compare the force exerted by growth cones (GCs) of neurons from the Peripheral Nervous System (PNS), such as Dorsal Root Ganglia (DRG) neurons, and from the Central Nervous System (CNS) such as hippocampal neurons. Developing GCs from dissociated DRG and hippocampal neurons were obtained from P1-P2 and P10-P12 rats. Comparing their morphology, we observed that the area of GCs of hippocampal neurons was 8-10 \ub5m(2) and did not vary between P1-P2 and P10-P12 rats, but GCs of DRG neurons were larger and their area increased from P1-P2 to P10-P12 by 2-4 times. The force exerted by DRG filopodia was in the order of 1-2 pN and never exceeded 5 pN, while hippocampal filopodia exerted a larger force, often in the order of 5 pN. Hippocampal and DRG lamellipodia exerted lateral forces up to 20 pN, but lamellipodia of DRG neurons could exert a vertical force larger than that of hippocampal neurons. Force-velocity relationships (Fv) in both types of neurons had the same qualitative behaviour, consistent with a common autocatalytic model of force generation. These results indicate that molecular mechanisms of force generation of GC from CNS and PNS neurons are similar but the amplitude of generated force is influenced by their cytoskeletal properties
    corecore