854 research outputs found

    Performance improvement and validation of a new MAP reconstruction algorithm

    Get PDF
    We previously proposed a fast maximum a posteriori (MAP) algorithm, limited-memory Broyden-Fletcher-Goldfarb- Shanno with boundary constrains (LBFGS-B-PC), combining LBFGS-B with diagonal preconditioning. Previous results have shown in simulations that it converges using around 40 projections independent of many factors. The aim of this study is to improve the algorithm further by using a better initial image and a modified preconditioner that is less sensitive to noise and data scale. By initializing the algorithm with the best initial image (one full iteration of OSEM with 35 subsets), ROI values can converge almost twice as fast for the same computation time. Moreover, the new preconditioner makes the performance more consistent between high and low count data sets. In addition, we have found a means to choose the stopping criteria to reach a desired level of quantitative accuracy in the reconstructed image. Based on the results with patient data, the optimized LBFGS-B-PC shows promise for clinical imaging

    Algorithms for Solving Misalignment Issues in Penalized PET/CT Reconstruction Using Anatomical Priors

    Get PDF
    In dual-modality systems, using anatomical priors has been shown to improve image quality and quantification in emission tomography. However, alignment between the functional and anatomical images is crucial. In this study, we propose two algorithms for solving misalignment issues. Both approaches are based on a recently published joint motion estimation and image reconstruction method. The first approach deforms the anatomical image to align it with the functional one while the second approach deforms both images to align them with the measured data. Our current implementation uses alternates between image reconstruction and alignment estimation. To evaluate the potential of these approaches, we have chosen Parallel Level Sets (PLS) as a representative anatomical penalty since it has shown promising results in literature, incorporating a spatially-variant penalty strength to achieve uniform local contrast and fast convergence rate. The performance evaluation was achieved by using simulated non-TOF data generated with an XCAT phantom in the thorax region. We used the attenuation image in the anatomical prior. The results demonstrated that both methods are able to estimate the misalignment and deform the anatomical image accordingly when a proper workflow for the alternating optimization is applied. However, the performance of the first approach depends highly on the workflow of the alternating process. In contrast, the second approach shows the ability to converge to the correct alignment faster than the first approach does, independent of the workflow. Our results indicate that it is possible to align functional and anatomical information, enabling the use of anatomical priors in practice

    Fast Quasi-Newton Algorithms for Penalized Reconstruction in Emission Tomography and Further Improvements via Preconditioning

    Get PDF
    OAPA This paper reports on the feasibility of using a quasi-Newton optimization algorithm, limited-memory Broyden- Fletcher-Goldfarb-Shanno with boundary constraints (L-BFGSB), for penalized image reconstruction problems in emission tomography (ET). For further acceleration, an additional preconditioning technique based on a diagonal approximation of the Hessian was introduced. The convergence rate of L-BFGSB and the proposed preconditioned algorithm (L-BFGS-B-PC) was evaluated with simulated data with various factors, such as the noise level, penalty type, penalty strength and background level. Data of three 18F-FDG patient acquisitions were also reconstructed. Results showed that the proposed L-BFGS-B-PC outperforms L-BFGS-B in convergence rate for all simulated conditions and the patient data. Based on these results, L-BFGSB- PC shows promise for clinical application

    Assessing the changes in the moisture/dryness of water cavity surfaces in imlili sebkha in southwestern morocco by using machine learning classification in google earth engine

    Full text link
    © 2020 by the authors. Imlili Sebkha is a stable and flat depression in southern Morocco that is more than 10 km long and almost 3 km wide. This region is mainly sandy, but its northern part holds permanent water pockets that contain fauna and flora despite their hypersaline water. Google Earth Engine (GEE) has revolutionized land monitoring analysis by allowing the use of satellite imagery and other datasets via cloud computing technology and server-side JavaScript programming. This work highlights the potential application of GEE in processing large amounts of satellite Earth Observation (EO) Big Data for the free, long-term, and wide spatio-temporal wet/dry permanent salt water cavities and moisture monitoring of Imlili Sebkha. Optical and radar images were used to understand the functions of Imlili Sebkha in discovering underground hydrological networks. The main objective of this work was to investigate and evaluate the complementarity of optical Landsat, Sentinel-2 data, and Sentinel-1 radar data in such a desert environment. Results show that radar images are not only well suited in studying desertic areas but also in mapping the water cavities in desert wetland zones. The sensitivity of these images to the variations in the slope of the topographic surface facilitated the geological and geomorphological analyses of desert zones and helped reveal the hydrological functions of Imlili Sebkha in discovering buried underground networks

    A PBIL for load balancing in network coding based multicasting

    Get PDF
    One of the most important issues in multicast is how to achieve a balanced traffic load within a communications network. This paper formulates a load balancing optimization problem in the context of multicast with network coding and proposes a modified population based incremental learning (PBIL) algorithm for tackling it. A novel probability vector update scheme is developed to enhance the global exploration of the stochastic search by introducing extra flexibility when guiding the search towards promising areas in the search space. Experimental results demonstrate that the proposed PBIL outperforms a number of the state-of-the-art evolutionary algorithms in terms of the quality of the best solution obtained

    Study of B -> \rho \pi decays at Belle

    Full text link
    This paper describes a study of B meson decays to the pseudoscalar-vector final state \rho\pi using 31.9\times 10^6 B\bar{B} events collected with the Belle detector at KEKB. The branching fractions B(B^+ \to \rho^0\pi^+) = (8.0^{+2.3+0.7}_{-2.0-0.7}) \times 10^{-6} and B(B^0 -> \rho^{+-} \pi^{-+}) = (20.8^{+6.0+2.8}_{-6.3-3.1}) \times 10^{-6} are obtained. In addition, a 90% confidence level upper limit of B(B^0 \to \rho^0\pi^0) < 5.3 \times 10^{-6}is reported.Comment: 14 pages, 3 figures, to be submitted to Phys. Lett.

    Benefits of Using a Spatially-variant Penalty Strength with Anatomical Priors in PET Reconstruction

    Get PDF
    In this study, we explore the use of a spatiallyvariant penalty strength in penalized image reconstruction using anatomical priors to reduce the dependence of lesion contrast on surrounding activity and lesion location. This work builds on a previous method to make the local perturbation response (LPR) approximately spatially invariant. While the dependence of lesion contrast on the local properties introduced by the anatomical penalty is intentional, the method aims to reduce the influence from surroundings lying along the lines of response (LORs) but not in the penalty neighborhood structure. The method is evaluated using simulated data, assuming that the anatomical information is absent or well-aligned with the corresponding activity images. Since the Parallel Level Sets (PLS) penalty is convex and has shown promising results in the literature, it is chosen as the representative anatomical penalty and incorporated into the previously proposed preconditioned algorithm (L-BFGSB-PC) for achieving both good image quality and fast convergence rate. A 2D disc phantom with a feature at the center and a 3D XCAT thorax phantom with lesions inserted in different slices are used to study how surrounding activity and lesion location affect the visual appearance and quantitative consistency. A bias and noise analysis is also performed with the 2D disc phantom. The consistency of the algorithm convergence rate with respect to different data noise and background levels is also investigated using the XCAT phantom. Finally, an example reconstruction for a patient dataset with inserted pseudo lesions is used as a demonstration in a clinical context. We show that applying the spatially-variant penalization with PLS can reduce the dependence of the lesion contrast on the surrounding activity and lesion location. It does not affect the bias and noise trade-off curves for matched local resolution. Moreover, when using the proposed penalization, significant improvement in algorithm convergence rate and convergence consistency is observed

    Electronic Structures of S-Doped Capped C-SWNT from First Principles Study

    Get PDF
    The semiconducting single-walled carbon nanotube (C-SWNT) has been synthesized by S-doping, and they have extensive potential application in electronic devices. We investigated the electronic structures of S-doped capped (5, 5) C-SWNT with different doping position using first principles calculations. It is found that the electronic structures influence strongly on the workfunction without and with external electric field. It is considered that the extended wave functions at the sidewall of the tube favor for the emission properties. With the S-doping into the C-SWNT, the HOMO and LUMO charges distribution is mainly more localized at the sidewall of the tube and the presence of the unsaturated dangling bond, which are believed to enhance workfunction. When external electric field is applied, the coupled states with mixture of localized and extended states are presented at the cap, which provide the lower workfunction. In addition, the wave functions close to the cap have flowed to the cap as coupled states and to the sidewall of the tube mainly as extended states, which results in the larger workfunction. It is concluded that the S-doped C-SWNT is not incentive to be applied in field emitter fabrication. The results are also helpful to understand and interpret the application in other electronic devices

    Oral Microbiome Profiles: 16S rRNA Pyrosequencing and Microarray Assay Comparison

    Get PDF
    The human oral microbiome is potentially related to diverse health conditions and high-throughput technology provides the possibility of surveying microbial community structure at high resolution. We compared two oral microbiome survey methods: broad-based microbiome identification by 16S rRNA gene sequencing and targeted characterization of microbes by custom DNA microarray.Oral wash samples were collected from 20 individuals at Memorial Sloan-Kettering Cancer Center. 16S rRNA gene survey was performed by 454 pyrosequencing of the V3–V5 region (450 bp). Targeted identification by DNA microarray was carried out with the Human Oral Microbe Identification Microarray (HOMIM). Correlations and relative abundance were compared at phylum and genus level, between 16S rRNA sequence read ratio and HOMIM hybridization intensity.; Correlation = 0.70–0.84).Microbiome community profiles assessed by 16S rRNA pyrosequencing and HOMIM were highly correlated at the phylum level and, when comparing the more commonly detected taxa, also at the genus level. Both methods are currently suitable for high-throughput epidemiologic investigations relating identified and more common oral microbial taxa to disease risk; yet, pyrosequencing may provide a broader spectrum of taxa identification, a distinct sequence-read record, and greater detection sensitivity
    • …
    corecore