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Abstract—This paper reports on the feasibility of using a
quasi-Newton optimization algorithm, limited-memory Broyden-
Fletcher-Goldfarb-Shanno with boundary constraints (L-BFGS-
B), for penalized image reconstruction problems in emission
tomography (ET). For further acceleration, an additional pre-
conditioning technique based on a diagonal approximation of
the Hessian was introduced. The convergence rate of L-BFGS-
B and the proposed preconditioned algorithm (L-BFGS-B-PC)
was evaluated with simulated data with various factors, such as
the noise level, penalty type, penalty strength and background
level. Data of three 18F-FDG patient acquisitions were also
reconstructed. Results showed that the proposed L-BFGS-B-PC
outperforms L-BFGS-B in convergence rate for all simulated
conditions and the patient data. Based on these results, L-BFGS-
B-PC shows promise for clinical application.

Index Terms—Emission tomography, penalized reconstruction,
L-BFGS-B, preconditioning.

I. INTRODUCTION

EMISSION tomography (ET) allows non-invasive obser-
vation of metabolic processes in vivo. With adequate

image processing and analysis methods, it is valuable for
the diagnosis of many diseases. In current clinical practice,
most applications of ET are based on visual interpretation.
With the expansion of its potential clinical application, such
as disease follow-up and therapy monitoring [1]–[3], there
is increased interest in precise quantification of the images.
The reconstructed images are therefore expected to accurately
represent the tracer concentration.
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Due to their ability to include modeling of the imaging
physics and statistics, iterative reconstruction algorithms have
become the method of choice for pursuing both good visual
quality and high quantitative accuracy, most often based on
maximum-likelihood (ML) estimation. However, image recon-
struction using ML estimation is an ill-conditioned problem,
resulting in noise amplification as iterations increase [4]. In
practice, the noise can be controlled by early termination of
the iterative process, at the expense of quantitative accuracy
[5], or by incorporation of a penalty term [6], [7]. One of the
most widely used methods for incorporating a penalty term
is the one-step-late (OSL) approach [8]. Although it can be
applied with any differentiable penalty function, the algorithm
can be unstable and divergent for large penalty strength [9].
Modified ML-EM algorithms [10] or separable paraboloidal
surrogates (SPS) [11] can directly incorporate the penalty term
into a closed-form update of the image without suffering from
convergence issues. However, the application of both strategies
is limited by the need to find a convex surrogate function.

Another alternative is to employ the generic steepest-descent
optimization algorithm to find the local solution along the
gradient of the penalized likelihood function by using a line
search. With a good line search algorithm, steepest descent
can show fast initial convergence rate but often slows down
while approaching the final solution as the direction defined
by the gradient can lead to a zigzag path to the solution for
ill-conditioned problems. Instead of using merely the gradient,
Newton’s method [12] defines a better search direction with
the help of the Hessian matrix. However, the Hessian in large
scale problems is usually too large to calculate or store in
memory and may be non-invertible. To overcome this, quasi-
Newton algorithms that use approximations for the Hessian
were therefore developed.

A popular example is the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [13], [14],
which approximates the inverse of the Hessian based on the
gradient information in the last few iterations. L-BFGS has
been extended to allow box constraints on the variables that
are to be estimated (L-BFGS-B) [15], [16]. Since the amount
of memory the algorithm requires can be controlled by the
user and scales linearly with the dimension of the problem,
the algorithm has become the most popular quasi-Newton
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method for optimizing nonlinear problems [17]. It is widely
used in machine learning but not yet in penalized-ML (PML)
image reconstruction. As L-BFGS-B constructs approximates
of the inverse Hessian by using only the gradient information,
the algorithm should be able to handle any differentiable
penalty term. This enables the incorporation of many non-
convex penalty functions, such as the recently developed
parallel level sets (PLS) [18] and the joint entropy priors
[19]. Its wide applicability together with fast convergence rate
make L-BFGS-B a promising candidate for a general-purpose
optimization algorithm for PML image reconstruction.

In an initial study [20], we observed that L-BFGS-B can
converge several times faster than OSL-EM [8] and relaxed
SPS [21]. However, some issues were found that made the use
of L-BFGS-B difficult for image reconstruction in ET as the
observed convergence rate was dependent on image and data
scale. This paper concentrates on improving the performance
of L-BFGS-B by introducing better initialization and addi-
tional diagonal preconditioning. Previously, Kaplan et al. used
L-BFGS-B with a preconditioner for accelerating simultaneous
estimation of activity and attenuation distributions in single-
photon emission computed tomography (SPECT) [22]. A
constant value was chosen as the preconditioner to rescale
the activity estimate. The algorithm was able to show a faster
convergence rate in most cases when both the transformed
activity and attenuation were in a similar scale. However, since
the scale of the activity varies with application and individual
dataset, the preconditioner had to be tuned accordingly by trial
and error. Here, we use a more general diagonal preconditioner
based on the second partial derivative of the objective function.
With the help of the extra information, the penalized recon-
struction problem is transformed to a better-conditioned form
which is then incorporated into the L-BFGS-B optimization
process. We denote the resulting algorithm as L-BFGS-B-PC.

A brief description of the PML optimization problem and
the penalty terms used is given in section II. Section III
provides an insight on the L-BFGS-B approach as well as the
derivation of L-BFGS-B-PC. The evaluation methods used in
this study are described in section IV. In section V, evaluations
of L-BFGS-B and L-BFGS-B-PC are performed using digital
simulations. The feasibility of applying both algorithms in
a clinical context is then assessed on three patient data
sets. Discussion and conclusions are presented in sections VI
and VII, respectively. This paper expands on initial results
previously presented by our group [23].

II. PENALIZED MAXIMUM-LIKELIHOOD IMAGE
RECONSTRUCTION

A. Objective Function

In ET, the measured data g ∈ RI given a tracer distribution
f ∈ RJ can be described using a Poisson model:

g ∼ Poisson(ḡ(f)), ḡ = Af + n (1)

where A is the I × J system matrix and n ∈ RI is the
expected background events vector, such as scatter and random
coincidences. Each element of A, Aij , denotes the probability
that an emission from voxel j is detected by bin i. Taking

the logarithm and omitting terms independent of f , the log-
likelihood function of g is:

L(g|f) =
∑
i

gi log ḡi(f)− ḡi(f) . (2)

Maximizing L is equivalent to minimizing −L. The optimiza-
tion therefore becomes a minimization problem. In the rest
of the paper, we refer to the optimization as a minimization
problem. Instead of optimizing (2), PML image reconstruction
minimizes the objective function Φ, which consists of the
negative likelihood −L and the penalty function R with a
parameter β controlling its strength:

Φ(f) = −L(g|f) + βR(f) . (3)

The optimization of the problem can then be addressed as:

f̂ = arg min
f≥0

Φ(f) . (4)

Note that a positivity constraint is enforced on f , as it
represents radioactivity concentration.

B. Penalty Functions

Several penalty functions can be used to control noise
propagation [24]–[26]. In this study, for simplicity, we use
Gibbs-type penalties, which penalize the difference between
voxels in a given neighborhood N :

R(f) =
1

2

∑
k

∑
j∈Nk

ωjkϕ(fj − fk) (5)

where ωjk indicates the weight between voxel j and its
neighboring voxel k. We used two potential functions ϕ: the
quadratic penalty (QP) and the rescaled log-cosh penalty (LP):

ϕQP(x) = x2 , ϕLP(x) =
1

ρ2
log(cosh(ρx)) (6)

where ρ is a scalar controlling the edge-preservation property
of ϕLP. The factor 1/ρ2 is derived from the second derivative
of ϕLP for normalization such that both priors behave similarly
for small |x|. Note that for penalties as defined in (5) and (6),
Φ is strictly convex [21].

III. ALGORITHMS

A. L-BFGS-B

In this section, we describe the main ideas behind L-BFGS-
B. More detail can be found in [15] and [27].

1) Unconstrained optimization: Given the objective func-
tion Φ and current estimate ft at iteration t, a polynomial
approximation of Φ in the neighborhood of ft is

qt(f) = Φ(ft) + v>t ∇Φ(ft) +
1

2
v>t B

−1
t vt . (7)

where vt = f −ft and Bt is an approximation of the inverse
of the Hessian matrix H at ft. The latter can be computed
using L-BFGS using limited memory. The algorithm does
not store Bt directly, but represents it by a pair of lower-
dimensional correction matrices, which record the change of
the update and the gradient of the objective function in the last
few iterations, in order to compute the matrix/vector products
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with Bt efficiently [28]. A description of the construction of
Bt is given in Appendix A.

When Bt is positive definite, and ignoring the positivity
constraint, qt has a unique minimizer f?:

f? = ft −Bt∇Φ(ft) . (8)

Since the polynomial approximation (7) is local, f? cannot
be used as an update for the minimization of Φ. Instead, we
seek an update ft+1 along the line segment {ft + αv?

t , α ∈
[0, 1]} with v?

t = f? − ft = −Bt∇Φ(ft) which sufficiently
decreases the objective function:

ft+1 = ft + α?v?
t . (9)

To ensure convergence and sufficient progress, the step length
α? is generally obtained using a “backtracking” algorithm,
which consists in gradually decreasing α from an initial value
αinit ≤ 1 until the Wolfe conditions (WCs) are met [29]:

Φ(ft + αv?
t ) ≤ Φ(ft) + λ1α∇Φ(ft)

>v?
t (10)

‖∇Φ(ft + αv?
t )>v?

t ‖2 ≤ λ2‖∇Φ(ft)
>v?

t ‖2 (11)

where 0 < λ1 < λ2 < 1 and ‖·‖2 is the `2-norm. In this study,
λ1 and λ2 were set to 10−4 and 0.9, respectively. Since both
the objective function and its gradient have to be computed
for each new α (as shown in (10)–(11)), extra forward and
backward projection operations are required when applying
a line search. Note that when α? satisfies the WCs and the
current estimated Bt is positive-definite, the new estimated
L-BFGS matrix Bt+1 is necessarily positive-definite [12].

2) Boundary Constraints: L-BFGS was extended to L-
BFGS-B [15], [16] to be able to handle minimization with
box constraints. The search direction is computed by solving
the constrained problem corresponding to (7):

f † = arg min qt(f) subject to l ≤ f ≤ u (12)

where l and u denote the lower and upper bounds of the
problem, respectively. In this work, solving (12) was achieved
following the method proposed in [15], which utilizes the
active constraints defined by the generalized Cauchy point.

We only used a lower boundary constraint l = 0 to impose
the non-negativity constraint of the image reconstruction prob-
lem in this study. The line-search is performed in the direction
v†t = f †−ft. Similarly to the unbounded case, a backtracking
algorithm is used to find a solution α† that satisfies the WCs.
By convexity, the update is guaranteed to satisfy the boundary
constraints.

For well-conditioned and small-scale problems, L-BFGS-
B is expected to produce a minimizer with fast convergence
rate as the approximate H−1 is a non-diagonal matrix that
takes into account the inter-variable correlation. However, the
limited memory approximations that are introduced can lead to
low accuracy of the approximate H−1 and slow convergence
for ill-conditioned or large-scale problems [28].

B. Preconditioned L-BFGS-B (L-BFGS-B-PC)

We propose to circumvent the potential deficiencies of L-
BFGS-B via preconditioning. Preconditioning is a general

strategy that transforms the problem into a new coordinate
system where it is easier to solve (12) [30]. Given f the
original estimate, the transformation is described as:

f̃ = Df (13)

with the preconditioner D, the transformation matrix. To
deal with the new estimate f̃ , the objective function and its
derivatives should be transformed accordingly:

Φ̃(f̃) = Φ(f) = Φ(D−1f̃)

∇Φ̃(f̃) = D−1∇Φ(D−1f̃)

H̃(f̃) = D−1H(D−1f̃)D−1 (14)

where H(D−1f̃) and H̃(f̃) respectively denote the Hessians
of Φ and Φ̃ evaluated at D−1f̃ and f̃ . To be able to keep
using box-constraints, we propose to use a diagonal precondi-
tioner. Since L-BFGS-B will have to restart the approximation
process for constructing Bt every time the preconditioner has
been updated, it is essential to use a precomputed (and fixed)
preconditioner to prevent constructing Bt with insufficient
history iterations. Otherwise, the lack of history information
will lead to an unreliable Bt and slow convergence rate.

In our previous study [20], we incorporated the precondi-
tioner introduced in the “precomputed denominator” of relaxed
ordered-subsets SPS (OS-SPS) [21] into L-BFGS-B. However,
as the preconditioner was calculated with the inverse of the
measured data, its performance was sensitive to low counts
[23]. The following preconditioner is therefore proposed in
this study:

D = diag

{
A>diag

{
g

(Af init + n)2

}
A1

+ β∇2R(f init)1

} 1
2

(15)

where f init is the initial guess and 1 is a vector of ones.
As the preconditioner D is not updated, the overall com-

putational demand of L-BFGS-B-PC is similar to that of L-
BFGS-B. Note that the performance of L-BFGS-B-PC will
be affected by the initial guess f init. Choosing a better
initial guess can therefore improve the convergence rate by
starting closer to the solution and also by improving the
preconditioner D.

C. Implementation

The implementation of L-BFGS-B employed in this
study was originally proposed in [15]. A pseudo-code that
summarizes the implementation can be found in Algo-
rithm 1.WC refers to the backtracking algorithm to find a
step length α? which satisfies the WCs (10) and (11), whereas
ApproxInvHess refers to the Hessian inverse compact approx-
imation method described in the Appendix. Since it has been
observed that a satisfactory approximation of H−1 can be
obtained based on a few previous iterations [28], a history
length m = 5 was maintained for constructing Bt. To take
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into account the scale of the variables, at the first iteration,
the line search step is initialized by

αinit
0 = min

(
1

‖∇Φ(f init)‖2
, 1

)
. (16)

Although this initialization is fine for certain scales of f ,
for some problems it can lead to suboptimal step length at
the first iteration if αinit

0 is too small. We implemented the
algorithm in MATLAB using vendor-provided C functions to
calculate the forward and backward projections. In our case,
the projector models acquisition on a GE Discovery STE
[31]. For the proposed L-BFGS-B-PC, the same L-BFGS-B

Algorithm 1: Pseudo-code for L-BFGS-B
Input: Data g, Φ, ∇Φ, initial f init, αinit

0 , β, λ1, λ2, m
Output: Estimated tracer distribution f
f0 ← f init ;
d0 ← ∇Φ(f0) ;
B ← Id ;
for t = 0, . . . ,MaxIter− 1 do

Define q : x 7→ (x− ft)>dt + 1
2

(x− ft)>B−1(x− ft) ;
f? ← arg minx≥0 q(x) ;
v? ← f? − ft ;
if t = 0 then

αinit ← αinit
0 ;

else
αinit ← 1 ;

end
α? ←WC(Φ,∇Φ,ft,v?, αinit, λ1, λ2) ;
ft+1 ← ft + α?v? ;
dt+1 ← ∇Φ(ft+1) ;
m′ ← min(t+ 1,m) ;
B ← ApproxInvHess (fs,ds, s ∈ {t+ 1−m′, . . . , t+ 1}) ;

end
f ← fMaxIter ;

implementation was used, but with the transformed objective
and gradient functions programmed in MATLAB. Since the
lack of the scale information of the variables is supplemented
by the preconditioner D, it is unnecessary for L-BFGS-B-PC
to use the suboptimal first step length (16) as L-BFGS-B does.
By modifying the initial step length to 1 to match other line
searches in the algorithm, L-BFGS-B-PC is able to update
the current estimate with a reasonably optimal step length at
every iteration. We have verified in initial experiments (not
shown) that this modification speeds up the initial line search.
Algorithm 2 shows a pseudo-code of the implementation.

Algorithm 2: Pseudo-code for L-BFGS-B-PC
Input: Data g, Φ, ∇Φ, initial f init, β, λ1, λ2, m
Output: Estimated tracer distribution f
f ← f init ;

D ← diag

{
A>diag

{
g

(Af+n)2

}
A1 + β∇2R(f)1

} 1
2

;

f ←Df ;
αinit
0 ← 1 ;

Define Φ̃ : x 7→ Φ(D−1x) ;
Define ∇Φ̃ : x 7→D−1∇Φ(D−1x) ;
f ← L-BFGS-B(g, Φ̃,∇Φ̃,f , αinit

0 , β, λ1, λ2,m) ;
f ←D−1f ;

TABLE I
A SUMMARY OF THE SIMULATED DATA FOR EVALUATING THE INFLUENCE

OF THE BACKGROUND.

Strue Sbg Stot

G1 TBR = 0.15 33.7 M 227.3 M 261 M
TBR = 3.71 205.6 M 55.4 M 261 M

G2 TBR = 0.15 111.2 M 749.2 M 860.4 M
TBR = 3.71 111.2 M 30 M 141.2 M

IV. EVALUATION

A. Data

The performance of L-BFGS-B and L-BFGS-B-PC was
initially evaluated with a digital phantom. To demonstrate the
feasibility of practical application, sample reconstructions with
three sets of real patient data are also presented.

1) Digital Phantom Simulation: A 3D volume from the
XCAT torso phantom [32] was cropped to a 192 × 192 × 47
matrix with voxel size of 3.125 mm. A slice of the phantom
and the corresponding attenuation map are shown in Fig 1.
This image was forward projected, taking attenuation into
account, into 3D sinograms corresponding to data from the
GE Discovery STE in 3D acquisition mode. For assessing the
noise effects, three data sets with total counts Stot of 52 M,
261 M and 1305 M were generated. Each of them had the same
true to background event ratio (TBR) = 0.74. We investigated
the possible effects from the background by introducing 4
more data sets, which can be divided into two groups. The
first group (G1) had the same total counts as the data with
Stot = 261 M counts, but had 5 times lower or higher TBR,
achieved by adjusting both background Sbg and true events
Strue. As Stot was unchanged, there were less Strue in the
data with higher Sbg. For the other group (G2), we kept Strue

the same as that in the data with Stot = 261 M counts, but
changed Sbg by 5 times lower or higher. The total count of the
data in G2 after adding the background were Stot = 141.2 M
and Stot = 860.4 M, respectively. Note that these two groups
had identical TBR for the same background level: TBR = 0.15
for the high background data and TBR = 3.71 for the low
background data. Table I shows a summary of the simulated
data for evaluating the influence of the background.

2) Patient Data: Data used for this retrospective study
included three patient datasets of the thorax acquired on the
GE Discovery STE PET/CT scanner. For each study, a cine-
CT scan (140 kVp, 60 mA, 4 s duration, 0.5 s rotation period,
0.45 s time between reconstructed images, 9 bed positions,
8 axial slices per bed position) was performed, followed by
a PET scan in fully 3D mode. The CT scan was used for
the attenuation correction. The acquisition was started 1 hour
after the injection of 315 MBq of 18F-FDG and patient consent
was collected beforehand. The total counts of the PET data
were Stot = 181 M, 255 M and 355 M, respectively. We then
used the vendor-provided software to bin the PET data into
sinograms and to model the corresponding detection efficiency,
attenuation, scatter and randoms.

B. PML Reconstruction

Reconstructed images had 192×192×47 voxels with voxel
size of 3.646 mm. The performance of L-BFGS-B and L-
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Fig. 1. A slice of the phantom (left) and the corresponding attenuation map
(right).

BFGS-B-PC was evaluated using both the quadratic (QP) and
log-cosh (LP) penalties. The penalty neighborhood structure
was defined as the closest 6 voxels. The scalar ρ in the LP
was fixed at 1.8, based on a visual comparison with images
from QP, so as to have an apparent edge preserving effect.

C. Initial Image

Initializing reconstruction algorithms with an image closer
to the final solution could speed them up, especially for the
proposed L-BFGS-B-PC with the preconditioner in (15). To
avoid increasing the overall computational cost significantly,
we propose to use an initial image reconstructed by ordered-
subsets (OS) -type algorithms. In this study, we investigate the
use of OS-EM [33] as the algorithm is widely used in practice.

To simplify the problem of finding the best initial image, a
two-part study was conducted. In the first part of the study, 8
different numbers of subsets (1, 2, 5, 7, 10, 14, 35 and 70)
were employed to speed up the convergence rate. We then fixed
the subsets to the limit found in the first part and increased
the number of full iterations from one to two to assess if the
performance can be improved even further. The reconstruction
was then performed by L-BFGS-B-PC initialized with those
images described above. The applied penalty function was QP
with β = 4. Note that the initial images were reconstructed
without using a penalty function. All initial conditions were
evaluated using the digital phantom dataset with Stot = 261 M
total counts and TBR = 0.74 and the patient data with Stot =
355 M.

D. Analysis

For simulated data, the performance evaluation of L-BFGS-
B and L-BFGS-B-PC was conducted in terms of visual com-
parison, objective function value and a convergence estimate
M that measures the distance from the current estimate to the
converged image f c. The metric was defined as:

M(t) =

√
1

N

‖ft − f c‖22
(f̄ c)2

(17)

where N is the number of voxels in the volume and f̄ c is the
mean value of all voxels in f c. Fast decrease of M indicates
fast convergence rate to the solution. For the converged image
f c in (17), we have used the output of SPS [11] at high
iteration number, since the convergence of this algorithm has
been well-established. To reduce the total computational cost,
we used the output of L-BFGS-B-PC with 40 iterations as the

initial image for SPS. We then ran SPS for 15000 iterations
and investigated the change of visual appearance and objective
function values. Since no significant change was observed after
14000 iterations, we chose the image obtained with (L-BFGS-
B-PC initialized) SPS at the 15000th iteration as the converged
image f c.

An initial evaluation with a visual comparison of a slice of
the reconstructed images from both L-BFGS-B and L-BFGS-
B-PC at different iterations was used to see if the changes in
the convergence rate are relevant. We then performed assess-
ments with respect to penalty type, penalty strength, noise
level and TBR to investigate the performance consistency
of the algorithms. Quantitative evaluation used plots of both
objective function and M values against the total number of
projection operations, i.e., the number of projection operations
in both the initial OS-EM and L-BFGS-B or L-BFGS-B-PC.
Each forward and backward projection of the full set of data
was counted separately. We used the number of projection
operations instead of the iteration numbers as it represents the
computational demand, especially for algorithms involving a
line search. Additional computational cost induced by the line
search was ignored.

To be able to compare the convergence rate among different
datasets, we computed the required number of projection
operations and the corresponding iterations for achieving
“practical” convergence. The corresponding iteration number
was determined by:

t?M = min {t : M(t) ≤ 0.01} . (18)

We also demonstrated the performance of the algorithms
with patient data.

V. RESULTS

A. Initial investigation

Fig. 2 shows reconstructed images of the XCAT data with
Stot = 261 M counts and TBR = 0.74 at the 5th, 10th and 15th

iteration for L-BFGS-B and L-BFGS-B-PC. Both algorithms
are initialized by the best initial image found in section V-B.
The reconstructions were performed with QP and β = 20.
Comparing images at the same iteration, we found those from
L-BFGS-B-PC represent better contrast and object delineation
than images reconstructed by the other algorithm.

Images for L-BFGS-B and L-BFGS-B-PC at iterations that
achieve convergence of M values (18) are shown in Fig. 3,
with the converged image from SPS for comparison. Profiles
along the central row of each image are also provided. As
shown in the figure, both algorithms are able to converge
visually to the same image and profile as SPS does.

An example comparison of the convergence rate of M
values for L-BFGS-B and L-BFGS-B-PC with the modified
line search is given in Fig. 4. Results for SPS are also provided.
As shown in the plot, both L-BFGS-B and L-BFGS-B-PC
achieved several times faster convergence rate than SPS. Also,
the proposed L-BFGS-B-PC shows the ability to converge
rapidly compared to L-BFGS-B. Although only images from
one simulation condition are provided, similar behavior was
observed for all studied data and reconstruction configurations.
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Fig. 2. A slice of the data with 261 M counts (TBR = 0.74) reconstructed by
L-BFGS-B (left column) and L-BFGS-B-PC (right column) at the 5th (first
row), 10th (second row) and 15th (third row) iteration.

Fig. 3. A slice of images that achieves convergence of M values for L-BFGS-
B (at the 44th iteration) (top-left) and L-BFGS-B-PC (at the 24th iteration)
(top-right). The converged image from SPS is also shown for comparison
(bottom-left). Profiles along the central row of all images are also provided
(bottom-right).

Projection Operations
20 40 60 80 100 120 140

M

0

0.2

0.4

0.6

0.8

1

1.2
L-BFGS-B
L-BFGS-B-PC
SPS

Fig. 4. A comparison of the convergence rate of M values for SPS, L-
BFGS-B and L-BFGS-B-PC with respect to the total projection operations.

More comparison results for these algorithms can be found in
our previous study [23].

B. Initial Image

The convergence rate was evaluated by plotting the ob-
jective function value against the total number of projection
operations. As shown in Fig. 5 top, the convergence rate
was improved as the number of subsets was increased. The
convergence trend for 70 subsets (there were only 4 projections
in one subset) was quite different from the others. Therefore,
we chose 35 as the highest number of subsets and increased
the full iteration number. Based on the results in Fig. 5 bottom,
the performance was not improved any further after one full
iteration. Although not shown here, similar results were ob-
served with the patient data. All reconstructions were therefore
initialized by 1 iteration of OS-EM with 35 subsets. Note
that we did not plot results from the initial point to improve
clarity. The first point of each line represents the objective
function value after the first iteration and the corresponding
total projection operation is the required projection operations
for constructing the initial image plus that for completing the
first iteration of L-BFGS-B-PC.

C. Convergence Rate

The objective function values plotted against the total pro-
jection operations are shown in Fig. 6 top. We used results
from the same dataset and reconstruction configuration as in
the visual comparison section as an example. Both algorithms
tend to converge to the same value but with different speeds.
By introducing a preconditioner, L-BFGS-B-PC converged
rapidly in terms of the objective function value. Fig. 6 bottom
is the corresponding M values plotted against projection
operations. Similar to the plot of the objective function values,
L-BFGS-B-PC achieves superior convergence rate of M value
to L-BFGS-B. Moreover, the difference in performance for
the two penalty types is extremely small for the proposed
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Fig. 5. The objective function values plotted against projection operations for
LBFGS-B-PC initialized by one full iteration of OS-EM with various subsets
(top) and 2 different full iterations of OS-EM with 35 subsets (bottom).

algorithm. Consistent results are obtained for other simulated
conditions.

D. Convergence Dependence on Different Factors

Simulated data with Stot = 52 M, 261 M and 1305 M, repre-
senting high, medium and low noise level, were reconstructed
by L-BFGS-B and L-BFGS-B-PC with both β = 4 and β = 20
to investigate the effect of noise level and penalty strength. The
smoothing QP or edge preserving LP penalty functions were
used for evaluating the performance dependence on the penalty
type. For each condition, Table II lists the required number of
projection operations for achieving convergence according to
(18). Values for simulation conditions with noise level from
high to low are shown from left to right and separated by a
slash. We also listed in parentheses the corresponding number
of iterations. Except for the low noise data reconstructed
using L-BFGS-B-PC with LP and β = 20, both algorithms
generally required more operations (or iterations) to satisfy
the convergence criterion as the noise level was increased or

Projection Operations
20 40 60 80 100 120 140

M

0

0.2

0.4

0.6

0.8

1

1.2
L-BFGS-B, QP
L-BFGS-B-PC, QP
L-BFGS-B, LP
L-BFGS-B-PC, LP

Fig. 6. Objective function values (top) and M values (bottom) plotted against
the total projection operations.

TABLE II
THE REQUIRED NUMBER OF PROJECTION OPERATIONS AND ITERATIONS

FOR ACHIEVING CONVERGENCE OF M VALUES FOR DIFFERENT PENALTY
TYPES, PENALTY STRENGTHS AND NOISE LEVELS.

L-BFGS-B L-BFGS-B-PC

QP
β = 4

162 / 132 / 821 94 / 64 / 44
(79 / 64 / 40)2 (45 / 29 / 20)

β = 20
122 / 92 / 72 64 / 54 / 44
(59 / 44 / 35) (30 / 24 / 20)

LP
β = 4

552 / 182 / 132 94 / 84 / 64
(274 / 89 / 65) (45 / 40 / 30)

β = 20
182 / 112 / 92 74 / 54 / 84
(89 / 54 / 44) (35 / 25 / 39)

1 Values listed from left to right and separated by a slash
are the required numbers of projection operations for
problems with noise level from high to low.
2 Values listed in parentheses are the corresponding
number of iterations.

the penalty strength was decreased. Note that reconstructing
with LP led to a slower convergence rate than when using
QP (with the same β). The possible cause of the exception is
discussed in section VI.

The data simulating different background levels in both
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TABLE III
THE REQUIRED NUMBERS OF PROJECTION OPERATIONS AND ITERATIONS

FOR ACHIEVING CONVERGENCE OF M VALUES FOR DATA WITH
DIFFERENT Stot , Strue AND BACKGROUND LEVELS.

L-BFGS-B L-BFGS-B-PC
Stot = 261 M, TBR = 0.74 132 (64)1 64 (29)
Stot = 261 M, TBR = 3.71 132 (65) 64 (31)
Stot = 261 M, TBR = 0.15 142 (70) 64 (31)
Stot = 141.2 M, TBR = 3.71 272 (135) 84 (39)
Stot = 860.4 M, TBR = 0.15 92 (46) 44 (21)

1 The required numbers of projection operations and the corre-
sponding number of iterations for each reconstruction are listed
together with the latter in parentheses.

groups of fixed Stot and fixed number of Strue were used
to study the influence of the background on the convergence
rate. The results were compared with those from the data with
Stot = 261 M counts and TBR = 0.74 (Strue = 111.2 M
and Sbg = 149.8 M). Since the dependence on penalty type
and strength were included above, the data were reconstructed
with only QP and β = 4 for both algorithms. We evaluated
the convergence rate by plotting M values against the total
projection operations (Fig. 7) and by listing the required
number of projection operations to reach the convergence
of M values (Table III). The former shows the convergence
rate in early iterations while the latter quantifies this at late
iterations. For data with the same Stot, the higher the TBR
value (i.e., the more true events) the faster the convergence
rate in early iterations is observed (Fig. 7 top). However, an
opposite trend is obtained when Stot is increased with the
background level. The presence of the background helps the
convergence rate in early iterations when the same number of
Strue are collected (Fig. 7 bottom).

Considering the convergence rate at later iterations, we
found that data with the same Stot can reach the criterion
(18) at almost the same iteration, regardless of the change in
the background level. For data with a fixed number of Strue

but increasing TBR, more iterations are needed to achieve the
convergence of M values (Table III). Despite the observed
dependence on various factors, the proposed L-BFGS-B-PC
shows a relatively consistent performance and outperforms L-
BFGS-B in all cases.

E. Demonstration with Patient Data

The patient data were reconstructed by both algorithms with
QP and a fixed β = 20. A coronal view of one patient dataset
from each algorithm at the iteration that achieves criterion (18)
are shown in Fig. 8 as an example. Profiles along the central
slice of both images are also provided. As in the simulation
study, the algorithms are able to converge to visually identical
images. This was also the case for the other two patient data
sets (not shown). Fig. 9 shows the M values plotted against
the total projection operations for each algorithm. Faster initial
convergence is achieved for data with higher Stot, which
is similar to what was observed in Table II. The required
projection operations for achieving the convergence of M
values are listed in Table IV. Based on the results in Fig. 9
and Table IV, L-BFGS-B-PC shows faster convergence rate
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Fig. 7. M values plotted against the total projection operations for data with
a fixed number of Stot (top) and data with a fixed number of Strue (bottom)
but different background levels.

TABLE IV
THE REQUIRED PROJECTION AND ITERATION NUMBERS FOR ACHIEVING

CONVERGENCE OF M VALUES FOR 3 PATIENT DATA SETS.

L-BFGS-B L-BFGS-B-PC
Stot = 181 M 662 (330) 74 (36)
Stot = 257 M 752 (375) 94 (45)
Stot = 355 M 522 (260) 74 (35)

than L-BFGS-B in all cases and its performance is much less
sensitive to noise level.

VI. DISCUSSION

We have demonstrated the feasibility of using L-BFGS-B
and L-BFGS-B-PC in PML reconstruction problems in ET.
Both L-BFGS-B and L-BFGS-B-PC are able to converge to
virtually identical solutions as SPS (Fig. 3) but with different
speed. For the evaluation of the computational demand, we
used the total projection operations instead of the computation
time because the algorithms were not implemented using the
same programming language. For example, L-BFGS-B was
implemented in a combination of C, Fortran and MATLAB
while SPS was implemented in MATLAB but using the vendor
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Fig. 8. A coronal view of images for L-BFGS-B at the 260st iteration
(top) and L-BFGS-B-PC at the 35th iteration (median) from one patient data.
Profiles along the central slice of both images are also provided (bottom).
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Fig. 9. The M values plotted against the total projection operations for all
patient data.

provided projectors programmed in C. Therefore, except for
the visual comparison that requires results at certain iterations
(Fig. 2, 3 and 8), we used plots and tables based on projection
operations to compare the computational demand between
different algorithms. In terms of memory demand, however,
both L-BFGS-B and L-BFGS-B-PC require more memory for
storing the correction matrices used to represent Bt comparing
to SPS. The required extra memory is approximately twice of
the product of the total number of voxels J and the maintained
history length m (see Appendix A for more information). As
a precomputed preconditioner has to be stored as well for the
proposed L-BFGS-B-PC, it uses slightly more memory than
L-BFGS-B.

To quantify the convergence rate, we introduced an image-
based metric M measuring the distance from the current
estimate to the expected solution. Comparing the top plot
of Fig. 6 to the bottom one, we found that both L-BFGS-

B and L-BFGS-B-PC required a higher number of projection
operations to reach a stable M value than to reach a stable
objective function value. We have therefore concentrated on
the convergence of M values in this discussion. Moreover,
since we observed that the convergence rate of M values for
SPS is much slower than that for both L-BFGS-B and L-
BFGS-B-PC (Fig. 4 and our previous work [20]), we have
excluded SPS in further comparison or discussion.

In our previous work [20], we also compared the conver-
gence rate of L-BFGS-B and the proposed L-BFGS-B-PC with
OSL-EM [8] and relaxed SPS [21]. We found that both L-
BFGS based algorithms were able to converge over 10 times
faster than the others in terms of objective function value and
regional recovery ratio in early iterations. The convergence
rate of OSL-EM and relaxed SPS can be further improved
by using ordered subsets. However, the former algorithm will
then suffer from the limit cycle problem while the performance
of the latter will depend on the relaxation parameter. Both
issues make the comparison of the convergence rate difficult,
especially at late iterations. Therefore, we did not include
OSL-EM and relaxed SPS for comparison in this study.

In studying the dependence of the convergence rate of L-
BFGS-B and L-BFGS-B-PC on various factors, we observed
that faster convergence rate was achieved generally with a
smoothing prior, strong penalty strength and low noise level
data for both algorithms (Table II). In terms of convergence
rate of both M values and the objective function values,
the proposed L-BFGS-B-PC outperformed L-BFGS-B for all
datasets that have been evaluated. In particular, L-BFGS-B-
PC achieved convergence within 100 projection operations for
all simulations, even for the noisy data set (i.e., the simulated
data with Stot = 52 M). The results suggest that the proposed
algorithm can even be used in cases where the noise level is
high, such as in gated or dynamic studies.

Based on Fig. 7 top, we found that the change in background
level for data with the same Stot can affect the convergence
rate in early iterations. From the plot, this can be at least
partially explained by the fact that the initial OS-EM image
was further away from the final solution for a higher back-
ground. Other algorithms, less sensitive to true to background
ratio for initialization, might decrease this effect. Despite the
performance dependence on those factors, at later iterations,
the proposed L-BFGS-B-PC is more consistent compared to
L-BFGS-B (Table II and Table III).

For the patient data study, the data set with the highest
Stot achieved the fastest convergence rate for both L-BFGS-B
and L-BFGS-B-PC at late iterations, which is consistent with
what has been observed from the simulation study. However,
the slowest convergence rate of M values was observed for
the data with medium Stot. Since the performance could be
affected by many factors, such as patient size and scatter
fraction, a more comprehensive evaluation with more patients
would be necessary.

Recall that the number of projection operations includes
both the forward and backward projections in the combined
OS-EM and L-BFGS, and the line search. As shown in the
tables, we found that for both algorithms the number of
projection operations for achieving the convergence criterion
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is only slightly larger than twice the number of iterations.
This means that the line search subroutine did not involve
many projections and so required minimum computational
burden. In other words, the initial step length satisfied the
WCs (10) and (11) for almost every iteration. As mentioned
in section III-C, both algorithms initialize the line search
with a step length of 1 after the first iteration. With this
step length, the algorithms make a direct approach from the
current estimate to the local solution of (12) as described in
section III-A2 with v†t = f † − ft. The backtracking of the
embedded line search takes place only when the algorithm
is about to converge. To find a smaller step length, a certain
decreasing pattern predefined by the backtracking algorithm
is considered. However, depending on the adopted decrease
scheme, the backtracking might not be able to find the step
length that minimizes the objective function for the reconstruc-
tion algorithm at the current estimate. We suspect that this is
the cause of the unexpected slow convergence rate observed
in Table III for the last entry (i.e., the required projection
operations for achieving the convergence of M values for the
low noise data reconstructed by L-BFGS-B-PC with LP and
β = 20). Further optimization of the line search is beyond the
scope of this study.

The primary motivation of incorporating a preconditioner
into L-BFGS-B is to have an initial estimate of the sec-
ond derivative associated with the problem. By utilizing the
extra information from the start, L-BFGS-B-PC is able to
solve the reconstruction problem rapidly and shows consistent
performance for different data conditions and reconstruction
configurations. Although the current paper concentrated on
L-BFGS-B, the proposed strategy could be applied to other
algorithms as well.

In this paper, we have used the preconditioner (15). Ad-
ditional information will be provided by Bt after a few
iterations and the influence of the preconditioner will become
less significant. This implies that the preconditioner does not
need to be a precise approximation of the square root of the
Hessian. Therefore, the algorithm should be able to benefit
from other fixed diagonal approximations of the square root
of the Hessian. For example, by expressing ML-EM in a
gradient descent form, a diagonal matrix with elements equal
to a normalized version of the current estimate was obtained
in [34]. This was used as motivation for using this diagonal
matrix as a preconditioner to improve the convergence rate
of a conjugate gradient algorithm [35]. In that paper, the
preconditioner was updated at each iteration. However, in
order for L-BFGS-B to benefit from the previous iterations
when constructing Bt, we can replace the current estimate by
the initial image as for the proposed preconditioner so that the
preconditioner becomes pre-computable.

In this study, we used QP and LP as the penalty functions
since both are convex and twice differentiable. This supports
the use of L-BFGS-B which approximates the local estimate
of the second derivative of a function by differences of first
derivatives. In the case where the function being minimized is
differentiable but not twice differentiable at some point (e.g.
the Huber functional [36]), it is likely that the L-BFGS-B
algorithm will have difficulty. Investigating additional priors,

however, is beyond the scope of this paper.

VII. CONCLUSION

We have investigated the performance of L-BFGS-B for
penalized reconstruction problems in ET with simulated and
real patient data. Its convergence rate can be considerably
improved by introducing a diagonally-scaled preconditioner
(L-BFGS-B-PC) combined with good initialization. Since the
proposed preconditioner can be precomputed, the overall com-
putational demand of L-BFGS-B-PC is similar to that of L-
BFGS-B. In addition to showing faster convergence rate than
L-BFGS-B, the performance of L-BFGS-B-PC, in terms of
the objective function value and the image-based metric M ,
is less sensitive to penalty type, penalty strength, data noise
level and background level. These encouraging results indicate
the potential usefulness of L-BFGS-B-PC for achieving high
quantitative accuracy with acceptable reconstruction time.

APPENDIX A
CONSTRUCTION OF THE APPROXIMATION OF THE INVERSE

OF THE HESSIAN USING A PAIR OF CORRECTION
MATRICES

This section describes the ApproxInvHess step in Algo-
rithm 1. At every iteration t, the corresponding correction
matrices consisting of gradient information in the last m
iterations are expressed as follows:

St = [st−m, . . . , st−1], Yt = [yt−m, . . . ,yt−1] (19)

where st = ft+1 − ft and yt = ∇Φ(ft+1)−∇Φ(ft). These
matrices can be used to find the 2nd order behavior of the
objective function and therefore to calculate approximations of
the Hessian. Based on the compact representations described
in [28], the approximation of H−1 at iteration t can be written
as follows:

Bt ≡
1

Q
I + W̄tM̄tW̄

>
t (20)

where

W̄t ≡
[

1
QYt St

]
,

M̄t ≡
[

0 −R−1t

−R−>t R−>t (Vt + 1
QY >t YtR

−1
t )

]
,

[Rt]kl =

{
s>t−m−1+kyt−m−1+l if k ≤ l
0 otherwise

with Vt = diag
{
s>t−myt−m, . . . , s

>
t−1yt−1

}
, k, l = 1, . . . ,m

and Q is a constant [15]. The representation of Bt is efficient
in terms of memory and computation time as W̄t is a J×2m
matrix and M̄t is 2m× 2m, where J is the number of voxels
and m = 5 in this study. In practice, the algorithm does not
compute and store Bt directly. Instead, it uses the correction
matrices so that the product Bt∇Φ(ft) can be calculated
efficiently by applying the unrolling technique described in
[28].

To initialize the construction of B1, the current implemen-
tation performs gradient descent at the first iteration to find
the first pair of correction vectors, S1 = [s0] and Y1 = [y0].
For iteration t < m, the corresponding Bt is calculated with
only t pairs of gradient information.
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