732 research outputs found
Order and disorder in product innovation models
This article argues that the conceptual development of product innovation models goes hand in hand with paradigmatic changes in the field of organization science. Remarkable similarities in the change of organizational perspectives and product innovation models are noticeable. To illustrate how changes in the organizational paradigm are being translated into changes in new product development (NPD) practices, five NPD models are presented: the sequential, compression, flexible, integrative and improvisational models. The evolution of product innovation management shows a move from planned and mechanistic, towards emergent and organic models. Such a process of re-orientation poses several challenges that are presented in the form of six propositions: from universal to contingent models, from invariant to flexible practices, from avoiding risks to taking advantage of opportunities, from planning to learning, from exclusive teams to inclusive networks, from structure to structured chaos
Valuation of fresh produce at Local Markets, consumer´sperspectives
[resumo][abstract
NEW SEISMIC SOURCE ZONE MODEL FOR PORTUGAL AND AZORES
The development of seismogenic source models is one of the first steps in seismic hazard assessment. In seismic hazard terminology, seismic source zones (SSZ) are polygons (or volumes) that delineate areas with homogeneous characteristics of seismicity. The importance of using knowledge on geology, seismicity and tectonics in the definition of source zones has been recognized for a long time [1]. However, the definition of SSZ tends to be subjective and controversial. Using SSZ based on broad geology, by spreading the seismicity clusters throughout the areal extent of a zone, provides a way to account for possible long-term non-stationary seismicity behavior [2,3]. This approach effectively increases seismicity rates in regions with no significant historical or instrumental seismicity, while decreasing seismicity rates in regions that display higher rates of seismicity. In contrast, the use of SSZ based on concentrations of seismicity or spatial smoothing results in stationary behavior [4]. In the FP7 Project SHARE (Seismic Hazard Harmonization in Europe), seismic hazard will be assessed with a logic tree approach that allows for three types of branches for seismicity models: a) smoothed seismicity, b) SSZ, c) SSZ and faults. In this context, a large-scale zonation model for use in the smoothed seismicity branch, and a new consensus SSZ model for Portugal and Azores have been developed. The new models were achieved with the participation of regional experts by combining and adapting existing models and incorporating new regional knowledge of the earthquake potential. The main criteria used for delineating the SSZ include distribution of seismicity, broad geological architecture, crustal characteristics (oceanic versus continental, tectonically active versus stable, etc.), historical catalogue completeness, and the characteristics of active or potentially-active faults. This model will be integrated into an Iberian model of SSZ to be used in the Project SHARE seismic hazard assessment
Research of the optical communications groups at University of Aveiro and Institute of Telecommunications - Aveiro Pole
This paper summarizes the research activities of the optical communications group at University of Aveiro and Institute of
Telecommunications – Aveiro pole. Several activities like clock recovery systems, both electrical and all optical, electrical
equalizers for very high bit rate DST systems, post-detection filters for multigigabit optical receivers, soliton systems,
simulation work on WDM, DST, EDFA and short pulse generation for high bit rate systems are presented
Metabolic and nutritional triggers associated with increased risk of liver complications in SARS-CoV-2
Obesity, diabetes, cardiovascular and respiratory diseases, cancer and smoking are risk factors for negative outcomes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can quickly induce severe respiratory failure in 5% of cases. Coronavirus disease-associated liver injury may occur during progression of SARS-CoV-2 in patients with or without pre-existing liver disease, and damage to the liver parenchyma can be caused by infection of hepatocytes. Cirrhosis patients may be particularly vulnerable to SARS-CoV-2 if suffering with cirrhosis-associated immune dysfunction. Furthermore, pharmacotherapies including macrolide or quinolone antibiotics and steroids can also induce liver damage. In this review we addressed nutritional status and nutritional interventions in severe SARS-CoV-2 liver patients. As guidelines for SARS-CoV-2 in intensive care (IC) specifically are not yet available, strategies for management of sepsis and SARS are suggested in SARS-CoV-2. Early enteral nutrition (EN) should be started soon after IC admission, preferably employing iso-osmolar polymeric formula with initial protein content at 0.8 g/kg per day progressively increasing up to 1.3 g/kg per day and enriched with fish oil at 0.1 g/kg per day to 0.2 g/kg per day. Monitoring is necessary to identify signs of intolerance, hemodynamic instability and metabolic disorders, and transition to parenteral nutrition should not be delayed when energy and protein targets cannot be met via EN. Nutrients including vitamins A, C, D, E, B6, B12, folic acid, zinc, selenium and ω-3 fatty acids have in isolation or in combination shown beneficial effects upon immune function and inflammation modulation. Cautious and monitored supplementation up to upper limits may be beneficial in management strategies for SARS-CoV-2 liver patients
Incorporating Descriptive Metadata into Seismic Source Zone Models for Seismic Hazard Assessment: A case study of the Azores-West Iberian region
In probabilistic seismic-hazard analysis (PSHA), seismic source zone (SSZ) models are widely used to account for the contribution to the hazard from earth- quakes not directly correlated with geological structures. Notwithstanding the impact of SSZ models in PSHA, the theoretical framework underlying SSZ models and the criteria used to delineate the SSZs are seldom explicitly stated and suitably docu- mented. In this paper, we propose a methodological framework to develop and docu- ment SSZ models, which includes (1) an assessment of the appropriate scale and degree of stationarity, (2) an assessment of seismicity catalog completeness-related issues, and (3) an evaluation and credibility ranking of physical criteria used to delin- eate the boundaries of the SSZs. We also emphasize the need for SSZ models to be supported by a comprehensive set of metadata documenting both the unique character- istics of each SSZ and the criteria used to delineate its boundaries. This procedure ensures that the uncertainties in the model can be properly addressed in the PSHA and that the model can be easily updated whenever new data are available. The pro- posed methodology is illustrated using the SSZ model developed for the Azores–West Iberian region in the context of the Seismic Hazard Harmonization in Europe project (project SHARE) and some of the most relevant SSZs are discussed in detail
A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability
Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and
Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer
the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the
solar corona and farther away in the interplanetary medium. The method, based
on the conservation principle of magnetic helicity, uses the relative magnetic
helicity of the solar source region as input estimates, along with the radius
and length of the corresponding CME flux rope. The method was initially applied
to cylindrical force-free flux ropes, with encouraging results. We hereby
extend our framework along two distinct lines. First, we generalize our
formalism to several possible flux-rope configurations (linear and nonlinear
force-free, non-force-free, spheromak, and torus) to investigate the dependence
of the resulting CME axial magnetic field on input parameters and the employed
flux-rope configuration. Second, we generalize our framework to both Sun-like
and active M-dwarf stars hosting superflares. In a qualitative sense, we find
that Earth may not experience severe atmosphere-eroding magnetospheric
compression even for eruptive solar superflares with energies ~ 10^4 times
higher than those of the largest Geostationary Operational Environmental
Satellite (GOES) X-class flares currently observed. In addition, the two
recently discovered exoplanets with the highest Earth-similarity index, Kepler
438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion
due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic
fields that are much higher than that of Earth.Comment: http://adsabs.harvard.edu/abs/2017SoPh..292...89
- …