467 research outputs found
Development of an Integrated DBH Estimation Model Based on Stand and Climatic Conditions
Using Korean National Forest Inventory (NFI) data, our study developed a model to estimate stand mean diameter at breast height (DBH) reflecting the influence of site and climate factors on forest growth for the major tree species in South Korea. A DBH estimation model was developed using stand-level variables (stand age, site index and number of trees per hectare) as independent factors. The spatial autocorrelation of residuals of the model was identified using semi-variogram analysis for each tree species. Further, a residual model, in which residuals were estimated by climatic factors (mean temperature, sum temperature in the growing season and precipitation), was developed assuming that the spatial autocorrelation of residuals reflects the differences in regional climatic conditions. Linear regression analysis showed that residuals of all tree species were significantly correlated with temperature and precipitation. The DBH and residual models were integrated to estimate the current DBH under different climatic factors (temperature and precipitation) and stand-level variables. This model had high reliability (R2 = 0.74–0.79), and no obvious dependencies or patterns in residuals were noted. Our results indicated that temperature increases caused by climate change would negatively affect the DBH estimate of coniferous trees, but not of oak species
Affleck-Dine dynamics and the dark sector of pangenesis
Pangenesis is the mechanism for jointly producing the visible and dark matter
asymmetries via Affleck-Dine dynamics in a baryon-symmetric universe. The
baryon-symmetric feature means that the dark asymmetry cancels the visible
baryon asymmetry and thus enforces a tight relationship between the visible and
dark matter number densities. The purpose of this paper is to analyse the
general dynamics of this scenario in more detail and to construct specific
models. After reviewing the simple symmetry structure that underpins all
baryon-symmetric models, we turn to a detailed analysis of the required
Affleck-Dine dynamics. Both gravity-mediated and gauge-mediated supersymmetry
breaking are considered, with the messenger scale left arbitrary in the latter,
and the viable regions of parameter space are determined. In the gauge-mediated
case where gravitinos are light and stable, the regime where they constitute a
small fraction of the dark matter density is identified. We discuss the
formation of Q-balls, and delineate various regimes in the parameter space of
the Affleck-Dine potential with respect to their stability or lifetime and
their decay modes. We outline the regions in which Q-ball formation and decay
is consistent with successful pangenesis. Examples of viable dark sectors are
presented, and constraints are derived from big bang nucleosynthesis, large
scale structure formation and the Bullet cluster. Collider signatures and
implications for direct dark matter detection experiments are briefly
discussed. The following would constitute evidence for pangenesis:
supersymmetry, GeV-scale dark matter mass(es) and a Z' boson with a significant
invisible width into the dark sector.Comment: 51 pages, 7 figures; v2: minor modifications, comments and references
added; v3: minor changes, matches published versio
Running coupling: Does the coupling between dark energy and dark matter change sign during the cosmological evolution?
In this paper we put forward a running coupling scenario for describing the
interaction between dark energy and dark matter. The dark sector interaction in
our scenario is free of the assumption that the interaction term is
proportional to the Hubble expansion rate and the energy densities of dark
sectors. We only use a time-variable coupling (with the scale factor
of the universe) to characterize the interaction . We propose a
parametrization form for the running coupling in which the
early-time coupling is given by a constant , while today the coupling is
given by another constant, . For investigating the feature of the running
coupling, we employ three dark energy models, namely, the cosmological constant
model (), the constant model (), and the time-dependent
model (). We constrain the models with the current
observational data, including the type Ia supernova, the baryon acoustic
oscillation, the cosmic microwave background, the Hubble expansion rate, and
the X-ray gas mass fraction data. The fitting results indicate that a
time-varying vacuum scenario is favored, in which the coupling crosses
the noninteracting line () during the cosmological evolution and the sign
changes from negative to positive. The crossing of the noninteracting line
happens at around , and the crossing behavior is favored at about
1 confidence level. Our work implies that we should pay more attention
to the time-varying vacuum model and seriously consider the phenomenological
construction of a sign-changeable or oscillatory interaction between dark
sectors.Comment: 8 pages, 5 figures; refs added; to appear in EPJ
Visible and dark matter from a first-order phase transition in a baryon-symmetric universe
The similar cosmological abundances observed for visible and dark matter
suggest a common origin for both. By viewing the dark matter density as a
dark-sector asymmetry, mirroring the situation in the visible sector, we show
that the visible and dark matter asymmetries may have arisen simultaneously
through a first-order phase transition in the early universe. The dark
asymmetry can then be equal and opposite to the usual visible matter asymmetry,
leading to a universe that is symmetric with respect to a generalised baryon
number. We present both a general structure, and a precisely defined example of
a viable model of this type. In that example, the dark matter is atomic as well
as asymmetric, and various cosmological and astrophysical constraints are
derived. Testable consequences for colliders include a Z' boson that couples
through the B-L charge to the visible sector, but also decays invisibly to dark
sector particles. The additional scalar particles in the theory can mix with
the standard Higgs boson and provide other striking signatures.Comment: 26 pages, comments and references added, JCAP versio
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
Moon Shadow by Cosmic Rays under the Influence of Geomagnetic Field and Search for Antiprotons at Multi-TeV Energies
We have observed the shadowing of galactic cosmic ray flux in the direction
of the moon, the so-called moon shadow, using the Tibet-III air shower array
operating at Yangbajing (4300 m a.s.l.) in Tibet since 1999. Almost all cosmic
rays are positively charged; for that reason, they are bent by the geomagnetic
field, thereby shifting the moon shadow westward. The cosmic rays will also
produce an additional shadow in the eastward direction of the moon if cosmic
rays contain negatively charged particles, such as antiprotons, with some
fraction. We selected 1.5 x10^{10} air shower events with energy beyond about 3
TeV from the dataset observed by the Tibet-III air shower array and detected
the moon shadow at level. The center of the moon was detected
in the direction away from the apparent center of the moon by 0.23 to
the west. Based on these data and a full Monte Carlo simulation, we searched
for the existence of the shadow produced by antiprotons at the multi-TeV energy
region. No evidence of the existence of antiprotons was found in this energy
region. We obtained the 90% confidence level upper limit of the flux ratio of
antiprotons to protons as 7% at multi-TeV energies.Comment: 13pages,4figures; Accepted for publication in Astroparticle Physic
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
A Measurement of Psi(2S) Resonance Parameters
Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been
measured in the vicinity of the Psi(2S) resonance using the BESII detector
operated at the BEPC. The Psi(2S) total width; partial widths to hadrons,
pi+pi- J/Psi, muons; and corresponding branching fractions have been determined
to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)=
(2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)=
(97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%,
respectively.Comment: 8 pages, 6 figure
Matter power spectrum and the challenge of percent accuracy
Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day N -body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used N -body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at k≤1 hMpc −1 and to within three percent at k≤10 hMpc −1. We also consider the bispectrum and show that the reduced bispectra agree at the sub-percent level for k≤2 hMpc −1 . In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an extended suite of simulations performed with our fastest code Pkdgrav3. We demonstrate that the simulation box size should not be smaller than L=0.5 h −1 Gpc to avoid systematic finite-volume effects (while much larger boxes are required to beat down the statistical sample variance). Furthermore, a maximum particle mass of M p =10 9 h −1 M ⊙ is required to conservatively obtain one percent precision of the matter power spectrum. As a consequence, numerical simulations covering large survey volumes of upcoming missions such as DES, LSST, and Euclid will need more than a trillion particles to reproduce clustering properties at the targeted accuracy
- …