61,629 research outputs found
Energy use and indoor environment in a sample of monitored domestic buildings in the UK
This paper is based on the low-cost approaches and transferable techniques that were applied in a PhD reserch project on energy-related occupancy activities. The strengths of qualitative and quantitative research strategies were combined for the study of this socio-technical research topic. Long-term field measurement was conducted for data acquisition using self-configured monitoring schemes. Case study was selected as the research approach. Building characteristics and household features in each case study group were purposefully selected to deploy same-standard monitoring schemes. Comparable monitoring results were pre-processed following identical procedures to implement the selected data analysis methods. The inspection results provided the researcher and the associated project partners with a novel perspective to interpret the difference in actual energy consumption and indoor environment within and between the case study groups. The research methodology and moitoring approach are covered in this paper that also presents the macro-scale monitoring results of energy use and indoor environment in two case study groups. The micro-scale presentation and algorithm-based examination will be covered in other academic papers. This paper demonstrates the huge potential for some commonly applied building assessment methods to be improved by objectively considering currently overlooked aspects, such as the low-tech design and construction of heavy-weight thermal mass houses and the largely varied occupancy activities. Future work relating to the comparison of actual monitoring data with simulation results is pointed out at the end of the paper
Opaque Service Virtualisation: A Practical Tool for Emulating Endpoint Systems
Large enterprise software systems make many complex interactions with other
services in their environment. Developing and testing for production-like
conditions is therefore a very challenging task. Current approaches include
emulation of dependent services using either explicit modelling or
record-and-replay approaches. Models require deep knowledge of the target
services while record-and-replay is limited in accuracy. Both face
developmental and scaling issues. We present a new technique that improves the
accuracy of record-and-replay approaches, without requiring prior knowledge of
the service protocols. The approach uses Multiple Sequence Alignment to derive
message prototypes from recorded system interactions and a scheme to match
incoming request messages against prototypes to generate response messages. We
use a modified Needleman-Wunsch algorithm for distance calculation during
message matching. Our approach has shown greater than 99% accuracy for four
evaluated enterprise system messaging protocols. The approach has been
successfully integrated into the CA Service Virtualization commercial product
to complement its existing techniques.Comment: In Proceedings of the 38th International Conference on Software
Engineering Companion (pp. 202-211). arXiv admin note: text overlap with
arXiv:1510.0142
Metallic and semi-metallic <100> silicon nanowires
Silicon nanowires grown along the -direction with a bulk Si core are
studied with density functional calculations. Two surface reconstructions
prevail after exploration of a large fraction of the phase space of nanowire
reconstructions. Despite their energetical equivalence, one of the
reconstructions is found to be strongly metallic while the other one is
semi-metallic. This electronic-structure behavior is dictated by the particular
surface states of each reconstruction. These results imply that doping is not
required in order to obtain good conducting Si nanowires.Comment: 13 pages, 4 figures; Phys. Rev. Lett., in pres
Study of Gaussian Relay Channels with Correlated Noises
In this paper, we consider full-duplex and half-duplex Gaussian relay
channels where the noises at the relay and destination are arbitrarily
correlated. We first derive the capacity upper bound and the achievable rates
with three existing schemes: Decode-and-Forward (DF), Compress-and-Forward
(CF), and Amplify-and-Forward (AF). We present two capacity results under
specific noise correlation coefficients, one being achieved by DF and the other
being achieved by direct link transmission (or a special case of CF). The
channel for the former capacity result is equivalent to the traditional
Gaussian degraded relay channel and the latter corresponds to the Gaussian
reversely-degraded relay channel. For CF and AF schemes, we show that their
achievable rates are strictly decreasing functions over the negative
correlation coefficient. Through numerical comparisons under different channel
settings, we observe that although DF completely disregards the noise
correlation while the other two can potentially exploit such extra information,
none of the three relay schemes always outperforms the others over different
correlation coefficients. Moreover, the exploitation of noise correlation by CF
and AF accrues more benefit when the source-relay link is weak. This paper also
considers the optimal power allocation problem under the correlated-noise
channel setting. With individual power constraints at the relay and the source,
it is shown that the relay should use all its available power to maximize the
achievable rates under any correlation coefficient. With a total power
constraint across the source and the relay, the achievable rates are proved to
be concave functions over the power allocation factor for AF and CF under
full-duplex mode, where the closed-form power allocation strategy is derived.Comment: 24 pages, 7 figures, submitted to IEEE Transactions on Communication
Gluon GPDs and Exclusive Photoproduction of a Quarkonium in Forward Region
Forward photoproduction of can be used to extract Generalized Parton
Distributions(GPD's) of gluons. We analyze the process at twist-3 level and
study relevant classifications of twist-3 gluon GPD's. At leading power or
twist-2 level the produced is transversely polarized. We find that at
twist-3 the produced is longitudinally polarized. Our study shows that
in high energy limit the twist-3 amplitude is only suppressed by the inverse
power of the heavy quark mass relatively to the twist-2 amplitude. This
indicates that the power correction to the cross-section of unpolarized
can have a sizeable effect. We have also derived the amplitude of the
production of at twist-3, but the result contains end-point
singularities. The production of other quarkonia has been briefly discussed.Comment: Discussions of results are adde
Mixed partial-wave scattering with spin-orbit coupling and validity of pseudo-potentials
We present exact solutions of two-body problem for spin-1/2 fermions with
isotropic spin-orbit(SO) coupling and interacting with an arbitrary short-range
potential. We find that in each partial-wave scattering channel, the
parametrization of two-body wavefunction at short inter-particle distance
depends on the scattering amplitudes of all channels. This reveals the mixed
partial-wave scattering induced by SO couplings. By comparing with results from
a square-well potential, we investigate the validity of original
pseudo-potential models in the presence of SO coupling. We find the s-wave
pseudo-potential provides a good approximation for low-energy solutions near
s-wave resonances, given the length scale of SO coupling much longer than the
potential range. However, near p-wave resonance the p-wave pseudo-potential
gives low-energy solutions that are qualitatively different from exact ones,
based on which we conclude that the p-wave model can not be applied to the
fermion system if the SO coupling strength is larger or comparable to the Fermi
momentum.Comment: 10 pages, 8 figures. Published version with figures improve
- …
