503 research outputs found

    Sperm quality assessment in Ficopomatus enigmaticus (Fauvel, 1923): Effects of selected organic and inorganic chemicals across salinity levels

    Get PDF
    Contamination by organic and inorganic compounds remains one of the most complex problems in both brackish and marine environments, causing potential implications for the reproductive success and survival of several broadcast spawners. Ficopomatus enigmaticus is a tubeworm polychaete that has previously been used as a model organism for ecotoxicological analysis, due to its sensitivity and ecological relevance. In the present study, the effects of five trace elements (zinc, copper, cadmium, arsenic and lead), one surfactant (sodium dodecyl sulfate, SDS) and one polycyclic aromatic hydrocarbon (benzo(a)pyrene, B(a)P) on the sperm quality of F. enigmaticus were investigated. Sperm suspensions were exposed in vitro to different concentrations of each selected contaminant under four salinity conditions (10, 20, 30, 35). Possible adverse effects on sperm function were assessed by measuring oxidative stress, membrane integrity, viability and DNA damage. Sperm quality impairments induced by organic contaminants were more evident than those induced by inorganic compounds. SDS exerted the largest effect on sperm. In addition, F. enigmaticus sperm showed high tolerance to salinity variation, supporting the wide use of this species as a promising model organism for ecotoxicological assays. Easy and rapid methods on polychaete spermatozoids were shown to be effective as integrated sperm quality parameters or as an alternative analysis for early assessment of marine and brackish water pollution

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Effects of copper on larvae of the marbled crab Pachygrapsus marmoratus (Decapoda, Grapsidae): toxicity test and biochemical marker responses

    Get PDF
    The importance of trace elements in ecotoxicological investigations is a well-known issue when monitoring polluted areas such as commercial harbors. Copper represents one of the most common metal contaminants, often detected in these areas as it is widely employed in various fields and has many sources of inflow in the marine environment. Pachygrapsus marmoratus is a widespread intertidal crab species that has been extensively studied in ecology, ethology and population genetics. Ecotoxicological studies have also been performed, exclusively on the adult stage. In the present study we investigated the mortality and biochemical (oxidative stress and neurotoxicity) responses of P. marmoratus larvae exposure to environmental relevant concentration of copper. Results showed dose-dependent responses in terms of larval mortality, with a calculated LC50 value of 0.5 mg/L of Cu2+. The LC50 concentration was used as the starting point for subsequent biochemical response evaluation. Results also demonstrated dose-dependent activation of antioxidant systems assuming a compensatory antioxidant activity to prevent higher cellular damage when larvae were exposed to the highest concentrations of copper. Moreover, a significant enhancement of neurotransmitter activities was observed, assuming a possible direct interaction of copper with the enzymes or an increase of free copper ion aliquot into the cells.publishe

    Simulating chemistry efficiently on fault-tolerant quantum computers

    Get PDF
    Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. Here we consider methods to make proposed chemical simulation algorithms computationally fast on fault-tolerant quantum computers in the circuit model. Fault tolerance constrains the choice of available gates, so that arbitrary gates required for a simulation algorithm must be constructed from sequences of fundamental operations. We examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay-Kitaev algorithm [C.M. Dawson and M.A. Nielsen, \emph{Quantum Inf. Comput.}, \textbf{6}:81, 2006]. For a given approximation error ϵ\epsilon, arbitrary single-qubit gates can be produced fault-tolerantly and using a limited set of gates in time which is O(logϵ)O(\log \epsilon) or O(loglogϵ)O(\log \log \epsilon); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for Lithium hydride.Comment: 33 pages, 18 figure

    A noise-reduction GWAS analysis implicates altered regulation of neurite outgrowth and guidance in autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide Association Studies (GWAS) have proved invaluable for the identification of disease susceptibility genes. However, the prioritization of candidate genes and regions for follow-up studies often proves difficult due to false-positive associations caused by statistical noise and multiple-testing. In order to address this issue, we propose the novel GWAS noise reduction (GWAS-NR) method as a way to increase the power to detect true associations in GWAS, particularly in complex diseases such as autism.</p> <p>Methods</p> <p>GWAS-NR utilizes a linear filter to identify genomic regions demonstrating correlation among association signals in multiple datasets. We used computer simulations to assess the ability of GWAS-NR to detect association against the commonly used joint analysis and Fisher's methods. Furthermore, we applied GWAS-NR to a family-based autism GWAS of 597 families and a second existing autism GWAS of 696 families from the Autism Genetic Resource Exchange (AGRE) to arrive at a compendium of autism candidate genes. These genes were manually annotated and classified by a literature review and functional grouping in order to reveal biological pathways which might contribute to autism aetiology.</p> <p>Results</p> <p>Computer simulations indicate that GWAS-NR achieves a significantly higher classification rate for true positive association signals than either the joint analysis or Fisher's methods and that it can also achieve this when there is imperfect marker overlap across datasets or when the closest disease-related polymorphism is not directly typed. In two autism datasets, GWAS-NR analysis resulted in 1535 significant linkage disequilibrium (LD) blocks overlapping 431 unique reference sequencing (RefSeq) genes. Moreover, we identified the nearest RefSeq gene to the non-gene overlapping LD blocks, producing a final candidate set of 860 genes. Functional categorization of these implicated genes indicates that a significant proportion of them cooperate in a coherent pathway that regulates the directional protrusion of axons and dendrites to their appropriate synaptic targets.</p> <p>Conclusions</p> <p>As statistical noise is likely to particularly affect studies of complex disorders, where genetic heterogeneity or interaction between genes may confound the ability to detect association, GWAS-NR offers a powerful method for prioritizing regions for follow-up studies. Applying this method to autism datasets, GWAS-NR analysis indicates that a large subset of genes involved in the outgrowth and guidance of axons and dendrites is implicated in the aetiology of autism.</p

    Evidence of novel finescale structural variation at autism spectrum disorder candidate loci

    Get PDF
    Background: Autism spectrum disorders (ASD) represent a group of neurodevelopmental disorders characterized by a core set of social-communicative and behavioral impairments. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, acting primarily via the GABA receptors (GABR). Multiple lines of evidence, including altered GABA and GABA receptor expression in autistic patients, indicate that the GABAergic system may be involved in the etiology of autism. Methods: As copy number variations (CNVs), particularly rare and de novo CNVs, have now been implicated in ASD risk, we examined the GABA receptors and genes in related pathways for structural variation that may be associated with autism. We further extended our candidate gene set to include 19 genes and regions that had either been directly implicated in the autism literature or were directly related (via function or ancestry) to these primary candidates. For the high resolution CNV screen we employed custom-designed 244 k comparative genomic hybridization (CGH) arrays. Collectively, our probes spanned a total of 11 Mb of GABA-related and additional candidate regions with a density of approximately one probe every 200 nucleotides, allowing a theoretical resolution for detection of CNVs of approximately 1 kb or greater on average. One hundred and sixty-eight autism cases and 149 control individuals were screened for structural variants. Prioritized CNV events were confirmed using quantitative PCR, and confirmed loci were evaluated on an additional set of 170 cases and 170 control individuals that were not included in the original discovery set. Loci that remained interesting were subsequently screened via quantitative PCR on an additional set of 755 cases and 1,809 unaffected family members. Results: Results include rare deletions in autistic individuals at JAKMIP1, NRXN1, Neuroligin4Y, OXTR, and ABAT. Common insertion/deletion polymorphisms were detected at several loci, including GABBR2 and NRXN3. Overall, statistically significant enrichment in affected vs. unaffected individuals was observed for NRXN1 deletions. Conclusions: These results provide additional support for the role of rare structural variation in ASD

    Copy Number Variants in Extended Autism Spectrum Disorder Families Reveal Candidates Potentially Involved in Autism Risk

    Get PDF
    Copy number variations (CNVs) are a major cause of genetic disruption in the human genome with far more nucleotides being altered by duplications and deletions than by single nucleotide polymorphisms (SNPs). In the multifaceted etiology of autism spectrum disorders (ASDs), CNVs appear to contribute significantly to our understanding of the pathogenesis of this complex disease. A unique resource of 42 extended ASD families was genotyped for over 1 million SNPs to detect CNVs that may contribute to ASD susceptibility. Each family has at least one avuncular or cousin pair with ASD. Families were then evaluated for co-segregation of CNVs in ASD patients. We identified a total of five deletions and seven duplications in eleven families that co-segregated with ASD. Two of the CNVs overlap with regions on 7p21.3 and 15q24.1 that have been previously reported in ASD individuals and two additional CNVs on 3p26.3 and 12q24.32 occur near regions associated with schizophrenia. These findings provide further evidence for the involvement of ICA1 and NXPH1 on 7p21.3 in ASD susceptibility and highlight novel ASD candidates, including CHL1, FGFBP3 and POUF41. These studies highlight the power of using extended families for gene discovery in traits with a complex etiology

    An X chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic component. The skewed prevalence toward males and evidence suggestive of linkage to the X chromosome in some studies suggest the presence of X-linked susceptibility genes in people with ASD.</p> <p>Methods</p> <p>We analyzed genome-wide association study (GWAS) data on the X chromosome in three independent autism GWAS data sets: two family data sets and one case-control data set. We performed meta- and joint analyses on the combined family and case-control data sets. In addition to the meta- and joint analyses, we performed replication analysis by using the two family data sets as a discovery data set and the case-control data set as a validation data set.</p> <p>Results</p> <p>One SNP, rs17321050, in the transducin β-like 1X-linked (<it>TBL1X</it>) gene [OMIM:300196] showed chromosome-wide significance in the meta-analysis (<it>P </it>value = 4.86 × 10<sup>-6</sup>) and joint analysis (<it>P </it>value = 4.53 × 10<sup>-6</sup>) in males. The SNP was also close to the replication threshold of 0.0025 in the discovery data set (<it>P </it>= 5.89 × 10<sup>-3</sup>) and passed the replication threshold in the validation data set (<it>P </it>= 2.56 × 10<sup>-4</sup>). Two other SNPs in the same gene in linkage disequilibrium with rs17321050 also showed significance close to the chromosome-wide threshold in the meta-analysis.</p> <p>Conclusions</p> <p><it>TBL1X </it>is in the Wnt signaling pathway, which has previously been implicated as having a role in autism. Deletions in the Xp22.2 to Xp22.3 region containing <it>TBL1X </it>and surrounding genes are associated with several genetic syndromes that include intellectual disability and autistic features. Our results, based on meta-analysis, joint analysis and replication analysis, suggest that <it>TBL1X </it>may play a role in ASD risk.</p
    corecore