26 research outputs found

    The formation of garnet in olivine-bearing metagabbros from the Adirondacks

    Full text link
    A regional study of olivine-bearing metagabbros in the Adirondacks has permitted testing of the P(pressure)-T(temperature)-X(composition) dependence of garnet-forming reactions as well as providing additional regional metamorphic pressure data. Six phases, olivine, orthopyroxene, clinopyroxene, garnet, plagioclase and spinel, which can be related by the reactions: orthopyroxene+clinopyroxene+spinel +anorthite=garnet, and forsterite+anorthite=garnet occur together both in coronal and in equant textures indicative of equilibrium. Compositions of the respective minerals are typically Fo 25–72 , En 44–75 , En 30–44 Fs 9–23 Wo 47–49 , Pp 13–42 Alm 39–63 Gr 16–20 , An 29–49 and Sp 16–58 . When they occur in the same rock, equant and coronal garnets are homogeneous and compositionally identical suggesting that chemical equilibrium may have been attained despite coronal textures. Extrapolating reactions in the simple CMAS system to granulite temperatures and making thermodynamic corrections for solid solutions gives equilibration pressures (using the thermometry of Bohlen et al. 1980b) ranging from about 6.5 kb in the Lowlands and southern Adirondacks to 7.0–8.0 kb in the Highlands for the assemblage olivine-plagioclase-garnet. These results are consistent with inferred peak metamorphic conditions in the Adirondacks (Valley and Bohlen 1979; Bohlen and Boettcher 1981). Thus the isobaric retrograde path suggested by Whitney and McLelland (1973) and Whitney (1978) for the formation of coronal garnet in olivine metagabbros may not be required. Application of the same equilibria gives >8.7 kb for South Harris, Scotland and 0.9 kb for the Nain Complex. Disagreement of the latter value with orthopyroxeneolivine-quartz barometry (Bohlen and Boettcher 1981) suggests that the use of iron-rich rocks (olivines ≧Fa 50 ) results in errors in calculated pressures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47335/1/410_2004_Article_BF00371301.pd

    Earth: Atmospheric Evolution of a Habitable Planet

    Full text link
    Our present-day atmosphere is often used as an analog for potentially habitable exoplanets, but Earth's atmosphere has changed dramatically throughout its 4.5 billion year history. For example, molecular oxygen is abundant in the atmosphere today but was absent on the early Earth. Meanwhile, the physical and chemical evolution of Earth's atmosphere has also resulted in major swings in surface temperature, at times resulting in extreme glaciation or warm greenhouse climates. Despite this dynamic and occasionally dramatic history, the Earth has been persistently habitable--and, in fact, inhabited--for roughly 4 billion years. Understanding Earth's momentous changes and its enduring habitability is essential as a guide to the diversity of habitable planetary environments that may exist beyond our solar system and for ultimately recognizing spectroscopic fingerprints of life elsewhere in the Universe. Here, we review long-term trends in the composition of Earth's atmosphere as it relates to both planetary habitability and inhabitation. We focus on gases that may serve as habitability markers (CO2, N2) or biosignatures (CH4, O2), especially as related to the redox evolution of the atmosphere and the coupled evolution of Earth's climate system. We emphasize that in the search for Earth-like planets we must be mindful that the example provided by the modern atmosphere merely represents a single snapshot of Earth's long-term evolution. In exploring the many former states of our own planet, we emphasize Earth's atmospheric evolution during the Archean, Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of potential atmospheric trajectories into the distant future, many millions to billions of years from now. All of these 'Alternative Earth' scenarios provide insight to the potential diversity of Earth-like, habitable, and inhabited worlds.Comment: 34 pages, 4 figures, 4 tables. Review chapter to appear in Handbook of Exoplanet

    The History, Relevance, and Applications of the Periodic System in Geochemistry

    Get PDF
    Geochemistry is a discipline in the earth sciences concerned with understanding the chemistry of the Earth and what that chemistry tells us about the processes that control the formation and evolution of Earth materials and the planet itself. The periodic table and the periodic system, as developed by Mendeleev and others in the nineteenth century, are as important in geochemistry as in other areas of chemistry. In fact, systemisation of the myriad of observations that geochemists make is perhaps even more important in this branch of chemistry, given the huge variability in the nature of Earth materials – from the Fe-rich core, through the silicate-dominated mantle and crust, to the volatile-rich ocean and atmosphere. This systemisation started in the eighteenth century, when geochemistry did not yet exist as a separate pursuit in itself. Mineralogy, one of the disciplines that eventually became geochemistry, was central to the discovery of the elements, and nineteenth-century mineralogists played a key role in this endeavour. Early “geochemists” continued this systemisation effort into the twentieth century, particularly highlighted in the career of V.M. Goldschmidt. The focus of the modern discipline of geochemistry has moved well beyond classification, in order to invert the information held in the properties of elements across the periodic table and their distribution across Earth and planetary materials, to learn about the physicochemical processes that shaped the Earth and other planets, on all scales. We illustrate this approach with key examples, those rooted in the patterns inherent in the periodic law as well as those that exploit concepts that only became familiar after Mendeleev, such as stable and radiogenic isotopes

    A conserved motif flags acyl carrier proteins for ÎČ-branching in polyketide synthesis

    Get PDF
    Type I PKSs often utilise programmed ÎČ-branching, via enzymes of an “HMG-CoA synthase (HCS) cassette”, to incorporate various side chains at the second carbon from the terminal carboxylic acid of growing polyketide backbones. We identified a strong sequence motif in Acyl Carrier Proteins (ACPs) where ÎČ-branching is known. Substituting ACPs confirmed a correlation of ACP type with ÎČ-branching specificity. While these ACPs often occur in tandem, NMR analysis of tandem ÎČ-branching ACPs indicated no ACP-ACP synergistic effects and revealed that the conserved sequence motif forms an internal core rather than an exposed patch. Modelling and mutagenesis identified ACP Helix III as a probable anchor point of the ACP-HCS complex whose position is determined by the core. Mutating the core affects ACP functionality while ACP-HCS interface substitutions modulate system specificity. Our method for predicting ÎČ-carbon branching expands the potential for engineering novel polyketides and lays a basis for determining specificity rules

    Heat capacity and phase equilibria of hollandite polymorph of KAlSi 3 O 8

    Full text link
    The low-temperature heat capacity ( C p ) of KAlSi 3 O 8 with a hollandite structure was measured over the range of 5–303 K with a physical properties measurement system. The standard entropy of KAlSi 3 O 8 hollandite is 166.2±0.2 J mol −1  K −1 , including an 18.7 J mol −1  K −1 contribution from the configurational entropy due to disorder of Al and Si in the octahedral sites. The entropy of K 2 Si 4 O 9 with a wadeite structure (Si-wadeite) was also estimated to facilitate calculation of phase equilibria in the system K 2 O–Al 2 O 3 –SiO 2 . The calculated phase equilibria obtained using Perple_x are in general agreement with experimental studies. Calculated phase relations in the system K 2 O–Al 2 O 3 –SiO 2 confirm a substantial stability field for kyanite–stishovite/coesite–Si-wadeite intervening between KAlSi 3 O 8 hollandite and sanidine. The upper stability of kyanite is bounded by the reaction kyanite (Al 2 SiO 5 ) = corundum (Al 2 O 3 )  + stishovite (SiO 2 ), which is located at 13–14 GPa for 1,100–1,400 K. The entropy and enthalpy of formation for K-cymrite (KAlSi 3 O 8 ·H 2 O) were modified to better fit global best-fit compilations of thermodynamic data and experimental studies. Thermodynamic calculations were undertaken on the reaction of K-cymrite to KAlSi 3 O 8 hollandite +  H 2 O, which is located at 8.3–10.0 GPa for the temperature range 800–1,600 K, well inside the stability field of stishovite. The reaction of muscovite to KAlSi 3 O 8 hollandite + corundum + H 2 O is placed at 10.0–10.6 GPa for the temperature range 900–1,500 K, in reasonable agreement with some but not all experiments on this reaction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46910/1/269_2006_Article_63.pd
    corecore