224 research outputs found

    Differential gene expression mediated by 15-hydroxyeicosatetraenoic acid in LPS-stimulated RAW 264.7 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Given the immuno-modulatory activity of native haemozoin (Hz), the effects of constitutive Hz components on immune response are of interest. Recently, gene expression changes mediated by HNE and the synthetic analogue of Hz, beta-haematin (BH), were identified and implicated a significant role for lipid peroxidation products in Hz's activity. The study presented herein examines gene expression changes in response to 15(S)-hydroxyeicosatetraenoic acid (HETE) in a model macrophage cell line.</p> <p>Methods</p> <p>LPS-stimulated RAW 264.7 macrophage-like cells were treated with 40 μM 15(S)-HETE for 24 h, and microarray analysis was used to identify global gene expression alterations. Fold changes were calculated relative to LPS-stimulated cells and those genes altered at least 1.8-fold (<it>p </it>value ≤ 0.025) were considered to be differentially expressed. Expression levels of a subset of genes were assessed by qRT-PCR and used to confirm the microarray results.</p> <p>Results</p> <p>Network analysis revealed that altered genes were primarily associated with "lipid metabolism" and "small molecule biochemistry". While several genes associated with PPAR-gamma receptor-mediated signaling were differentially expressed, a number of genes indicated the activation of secondary signaling cascades. Genes related to cytoadherence (cell-cell and cell-matrix), leukocyte extravasation, and inflammatory response were also differentially regulated by treatment, supporting a potential role for 15(S)-HETE in malaria pathogenesis.</p> <p>Conclusion</p> <p>These results add insight and detail to 15-HETE's effects on gene expression in macrophage-like cells. Data indicate that while 15-HETE exerts biological activity and may participate in Hz-mediated immuno-modulation, the gene expression changes are modest relative to those altered by the lipid peroxidation product HNE.</p

    Activating mutation in MET oncogene in familial colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In developed countries, the lifetime risk of developing colorectal cancer (CRC) is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The <it>MET </it>proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility.</p> <p>Methods</p> <p><it>MET </it>exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies). Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C <b>></b>T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors.</p> <p>Results</p> <p>Here we report a germline non-synonymous change in the <it>MET </it>proto-oncogene at amino acid position T992I (also reported as <it>MET </it>p.T1010I) in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in <1% in the general population. The threonine at amino acid position 992 lies in the tyrosine kinase domain of MET and a change to isoleucine at this position has been shown to promote metastatic behavior in cell-based models. The average age of CRC diagnosis in patients in this study is 63 years in mutation carriers, which is 8 years earlier than the general population average for CRC.</p> <p>Conclusions</p> <p>Although the <it>MET </it>p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this <it>MET </it>genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will be an important extension of this work to define the clinical significance.</p

    Light Variability Illuminates Niche-Partitioning among Marine Picocyanobacteria

    Get PDF
    Prochlorococcus and Synechococcus picocyanobacteria are dominant contributors to marine primary production over large areas of the ocean. Phytoplankton cells are entrained in the water column and are thus often exposed to rapid changes in irradiance within the upper mixed layer of the ocean. An upward fluctuation in irradiance can result in photosystem II photoinactivation exceeding counteracting repair rates through protein turnover, thereby leading to net photoinhibition of primary productivity, and potentially cell death. Here we show that the effective cross-section for photosystem II photoinactivation is conserved across the picocyanobacteria, but that their photosystem II repair capacity and protein-specific photosystem II light capture are negatively correlated and vary widely across the strains. The differences in repair rate correspond to the light and nutrient conditions that characterize the site of origin of the Prochlorococcus and Synechococcus isolates, and determine the upward fluctuation in irradiance they can tolerate, indicating that photoinhibition due to transient high-light exposure influences their distribution in the ocean

    High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays

    Get PDF
    BACKGROUND:A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small (~40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue.RESULTS:Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE.CONCLUSION:MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Epistasis: Obstacle or Advantage for Mapping Complex Traits?

    Get PDF
    Identification of genetic loci in complex traits has focused largely on one-dimensional genome scans to search for associations between single markers and the phenotype. There is mounting evidence that locus interactions, or epistasis, are a crucial component of the genetic architecture of biologically relevant traits. However, epistasis is often viewed as a nuisance factor that reduces power for locus detection. Counter to expectations, recent work shows that fitting full models, instead of testing marker main effect and interaction components separately, in exhaustive multi-locus genome scans can have higher power to detect loci when epistasis is present than single-locus scans, and improvement that comes despite a much larger multiple testing alpha-adjustment in such searches. We demonstrate, both theoretically and via simulation, that the expected power to detect loci when fitting full models is often larger when these loci act epistatically than when they act additively. Additionally, we show that the power for single locus detection may be improved in cases of epistasis compared to the additive model. Our exploration of a two step model selection procedure shows that identifying the true model is difficult. However, this difficulty is certainly not exacerbated by the presence of epistasis, on the contrary, in some cases the presence of epistasis can aid in model selection. The impact of allele frequencies on both power and model selection is dramatic

    Investigating the Structural Impacts of I64T and P311S Mutations in APE1-DNA Complex: A Molecular Dynamics Approach

    Get PDF
    Elucidating the molecular dynamic behavior of Protein-DNA complex upon mutation is crucial in current genomics. Molecular dynamics approach reveals the changes on incorporation of variants that dictate the structure and function of Protein-DNA complexes. Deleterious mutations in APE1 protein modify the physicochemical property of amino acids that affect the protein stability and dynamic behavior. Further, these mutations disrupt the binding sites and prohibit the protein to form complexes with its interacting DNA.In this study, we developed a rapid and cost-effective method to analyze variants in APE1 gene that are associated with disease susceptibility and evaluated their impacts on APE1-DNA complex dynamic behavior. Initially, two different in silico approaches were used to identify deleterious variants in APE1 gene. Deleterious scores that overlap in these approaches were taken in concern and based on it, two nsSNPs with IDs rs61730854 (I64T) and rs1803120 (P311S) were taken further for structural analysis.Different parameters such as RMSD, RMSF, salt bridge, H-bonds and SASA applied in Molecular dynamic study reveals that predicted deleterious variants I64T and P311S alters the structure as well as affect the stability of APE1-DNA interacting functions. This study addresses such new methods for validating functional polymorphisms of human APE1 which is critically involved in causing deficit in repair capacity, which in turn leads to genetic instability and carcinogenesis

    Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression

    Get PDF
    The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNβ and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS
    corecore