398 research outputs found

    Dry Sliding-Friction and Wear Behavior of Hot-Extruded Al6061/Si3N4/Cf Hybrid Metal Matrix Composite.

    Get PDF
    The effects of reinforcement addition and hot extrusion on the microstructures, micro hardness, friction, and wear behavior of aluminium (Al) hybrid composite were investigated. Al6061 dispersed with electroless nickel-coated Si3N4 (6wt.%) and copper-coated carbon fiber (Cf) (1wt.%) hybrid composites was developed through stir casting followed by hot extrusion. Optical micro structural studies confirmed that the size of reinforcements decreased, and their orientations were in the extrusion direction. The decrease in the grain size (29%) of hybrid composites was larger than that in the grain size of matrix alloys under hot-extruded conditions. The synthesized hot-extruded Al6061 hybrid composite exhibited a lower coefficient of friction (51%) and high wear resistance (39%) compared with the hotextruded Al6061base alloy

    Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Auxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response, lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs) are the transcription factors that regulate the expression of auxin responsive genes. The <it>ARF </it>genes are represented by a large multigene family in plants. The first draft of full maize genome assembly has recently been released, however, to our knowledge, the <it>ARF </it>gene family from maize (<it>ZmARF </it>genes) has not been characterized in detail.</p> <p>Results</p> <p>In this study, 31 maize (<it>Zea mays </it>L.) genes that encode ARF proteins were identified in maize genome. It was shown that maize <it>ARF </it>genes fall into related sister pairs and chromosomal mapping revealed that duplication of <it>ZmARFs </it>was associated with the chromosomal block duplications. As expected, duplication of some <it>ZmARFs </it>showed a conserved intron/exon structure, whereas some others were more divergent, suggesting the possibility of functional diversification for these genes. Out of these 31 <it>ZmARF </it>genes, 14 possess auxin-responsive element in their promoter region, among which 7 appear to show small or negligible response to exogenous auxin. The 18 <it>ZmARF </it>genes were predicted to be the potential targets of small RNAs. Transgenic analysis revealed that increased miR167 level could cause degradation of transcripts of six potential targets (<it>ZmARF3</it>, <it>9</it>, <it>16</it>, <it>18</it>, <it>22 </it>and <it>30</it>). The expressions of maize <it>ARF </it>genes are responsive to exogenous auxin treatment. Dynamic expression patterns of <it>ZmARF </it>genes were observed in different stages of embryo development.</p> <p>Conclusions</p> <p>Maize <it>ARF </it>gene family is expanded (31 genes) as compared to <it>Arabidopsis </it>(23 genes) and rice (25 genes). The expression of these genes in maize is regulated by auxin and small RNAs. Dynamic expression patterns of <it>ZmARF </it>genes in embryo at different stages were detected which suggest that maize <it>ARF </it>genes may be involved in seed development and germination.</p

    Radiation Induces Acute Alterations in Neuronal Function

    Get PDF
    Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage. In the past it was accepted that radiation-induced normal tissue injury resulted from a progressive reduction in the survival of clonogenic cells. Moreover, because radiation-induced brain dysfunction is believed to evolve over months to years, most studies have focused on late changes in brain parenchyma. However, clinically, acute changes in cognition are also observed. Because neurons are fully differentiated post-mitotic cells, little information exists on the acute effects of radiation on synaptic function. The purpose of our study was to assess the potential acute effects of radiation on neuronal function utilizing ex vivo hippocampal brain slices. The cellular localization and functional status of excitatory and inhibitory neurotransmitter receptors was identified by immunoblotting. Electrophysiological recordings were obtained both for populations of neuronal cells and individual neurons. In the dentate gyrus region of isolated ex vivo slices, radiation led to early decreases in tyrosine phosphorylation and removal of excitatory N-methyl-D-aspartate receptors (NMDARs) from the cell surface while simultaneously increasing the surface expression of inhibitory gamma-aminobutyric acid receptors (GABAARs). These alterations in cellular localization corresponded with altered synaptic responses and inhibition of long-term potentiation. The non-competitive NMDAR antagonist memantine blocked these radiation-induced alterations in cellular distribution. These findings demonstrate acute effects of radiation on neuronal cells within isolated brain slices and open new avenues for study

    Polyphenols Sensitization Potentiates Susceptibility of MCF-7 and MDA MB-231 Cells to Centchroman

    Get PDF
    Polyphenols as “sensitizers” together with cytotoxic drugs as “inducers” cooperate to trigger apoptosis in various cancer cells. Hence, their combination having similar mode of mechanism may be a novel approach to enhance the efficacy of inducers. Additionally, this will also enable to achieve the physiological concentrations facilitating significant increase in the activity at concentrations which the compound can individually provide. Here we propose that polyphenols (Resveratrol (RES) and Curcumin (CUR)) pre-treatment may sensitize MCF-7/MDA MB-231 (Human Breast Cancer Cells, HBCCs) to Centchroman (CC, antineoplastic agent). 6 h pre-treated cells with 10 µM RES/CUR and 100 µM RES/30 µM CUR doses, followed by 10 µM CC for 18 h were investigated for Ser-167 ER-phosphorylation, cell cycle arrest, redox homeostasis, stress activated protein kinase (SAPKs: JNK and p38 MAPK) pathways and downstream apoptosis effectors. Low dose RES/CUR enhances the CC action through ROS mediated JNK/p38 as well as mitochondrial pathway in MCF-7 cells. However, RES/CUR sensitization enhanced apoptosis in p53 mutant MDA MB-231 cells without/with involvement of ROS mediated JNK/p38 adjunct to Caspase-9. Contrarily, through high dose sensitization in CC treated cells, the parameters remained unaltered as in polyphenols alone. We conclude that differential sensitization of HBCCs with low dose polyphenol augments apoptotic efficacy of CC. This may offer a novel approach to achieve enhanced action of CC with concomitant reduction of side effects enabling improved management of hormone-dependent breast cancer

    Profiling Critical Cancer Gene Mutations in Clinical Tumor Samples

    Get PDF
    BACKGROUND: Detection of critical cancer gene mutations in clinical tumor specimens may predict patient outcomes and inform treatment options; however, high-throughput mutation profiling remains underdeveloped as a diagnostic approach. We report the implementation of a genotyping and validation algorithm that enables robust tumor mutation profiling in the clinical setting. METHODOLOGY: We developed and implemented an optimized mutation profiling platform ("OncoMap") to interrogate approximately 400 mutations in 33 known oncogenes and tumor suppressors, many of which are known to predict response or resistance to targeted therapies. The performance of OncoMap was analyzed using DNA derived from both frozen and FFPE clinical material in a diverse set of cancer types. A subsequent in-depth analysis was conducted on histologically and clinically annotated pediatric gliomas. The sensitivity and specificity of OncoMap were 93.8% and 100% in fresh frozen tissue; and 89.3% and 99.4% in FFPE-derived DNA. We detected known mutations at the expected frequencies in common cancers, as well as novel mutations in adult and pediatric cancers that are likely to predict heightened response or resistance to existing or developmental cancer therapies. OncoMap profiles also support a new molecular stratification of pediatric low-grade gliomas based on BRAF mutations that may have immediate clinical impact. CONCLUSIONS: Our results demonstrate the clinical feasibility of high-throughput mutation profiling to query a large panel of "actionable" cancer gene mutations. In the future, this type of approach may be incorporated into both cancer epidemiologic studies and clinical decision making to specify the use of many targeted anticancer agents

    Analysis of early mesothelial cell responses to Staphylococcus epidermidis isolated from patients with peritoneal dialysis-associated peritonitis

    Get PDF
    The major complication of peritoneal dialysis (PD) is the development of peritonitis, an infection within the abdominal cavity, primarily caused by bacteria. PD peritonitis is associated with significant morbidity, mortality and health care costs. Staphylococcus epidermidis is the most frequently isolated cause of PD-associated peritonitis. Mesothelial cells are integral to the host response to peritonitis, and subsequent clinical outcomes, yet the effects of infection on mesothelial cells are not well characterised. We systematically investigated the early mesothelial cell response to clinical and reference isolates of S. epidermidis using primary mesothelial cells and the mesothelial cell line Met-5A. Using an unbiased whole genome microarray, followed by a targeted panel of genes known to be involved in the human antibacterial response, we identified 38 differentially regulated genes (adj. p-value &lt; 0.05) representing 35 canonical pathways after 1 hour exposure to S. epidermidis. The top 3 canonical pathways were TNFR2 signaling, IL-17A signaling, and TNFR1 signaling (adj. pvalues of 0.0012, 0.0012 and 0.0019, respectively). Subsequent qPCR validation confirmed significant differences in gene expression in a number of genes not previously described in mesothelial cell responses to infection, with heterogeneity observed between clinical isolates of S. epidermidis, and between Met-5A and primary mesothelial cells. Heterogeneity between different S. epidermidis isolates suggests that specific virulence factors may play critical roles in influencing outcomes from peritonitis. This study provides new insights into early mesothelial cell responses to infection with S. epidermidis, and confirms the importance of validating findings in primary mesothelial cells

    Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform

    Get PDF
    Prostate cancer (PCa) is the most common type of cancer found in men and among the leading causes of cancer death in the western world. In the present study, we compared the individual protein expression patterns from histologically characterized PCa and the surrounding benign tissue obtained by manual micro dissection using highly sensitive two-dimensional differential gel electrophoresis (2D-DIGE) coupled with mass spectrometry. Proteomic data revealed 118 protein spots to be differentially expressed in cancer (n = 24) compared to benign (n = 21) prostate tissue. These spots were analysed by MALDI-TOF-MS/MS and 79 different proteins were identified. Using principal component analysis we could clearly separate tumor and normal tissue and two distinct tumor groups based on the protein expression pattern. By using a systems biology approach, we could map many of these proteins both into major pathways involved in PCa progression as well as into a group of potential diagnostic and/or prognostic markers. Due to complexity of the highly interconnected shortest pathway network, the functional sub networks revealed some of the potential candidate biomarker proteins for further validation. By using a systems biology approach, our study revealed novel proteins and molecular networks with altered expression in PCa. Further functional validation of individual proteins is ongoing and might provide new insights in PCa progression potentially leading to the design of novel diagnostic and therapeutic strategies
    corecore