214 research outputs found

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Detection of oncogenic virus genomes and gene products in lung carcinoma

    Get PDF
    We investigated a series of 122 cases of small cell lung carcinomas and non-small cell lung carcinomas for the presence of several viruses that are known to be oncogenic in humans. Thus, viral genomes (DNA) and/or RNA transcripts and/or proteins of human papillomaviruses (HPV) 16, 18, 31, 33, 51, Epstein–Barr virus (EBV), human herpesvirus 8 (HHV-8), human cytomegalovirus (HCMV) and simian virus 40 (SV40) were investigated on tissue sections (prepared in tissue microarrays) with different techniques of immunohistochemistry and in situ hybridisation. None of the cases displayed a single positive tumour cell for all the viruses tested whatever the technique applied. Of note, in five cases of tumours with lymphoid infiltrates, we detected scattered EBV (EBER)-positive bystander lymphocytes. In three cases, a faint nuclear staining was found with the anti-latent nuclear antigen/LANA1 (HHV-8) antibody. These cases were checked by PCR with two sets of primers (orf 26 and orf 75) and remained negative for this latter virus. Taken together, our data strongly suggest that the conventional human oncogenic viruses (HPV, EBV, HCMV, HHV-8 and SV40) are unlikely to play some role in the development of lung carcinomas

    Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG

    Get PDF
    Non-invasive electrical stimulation of the human cortex by means of transcranial direct current stimulation (tDCS) has been instrumental in a number of important discoveries in the field of human cortical function and has become a well-established method for evaluating brain function in healthy human participants. Recently, transcranial alternating current stimulation (tACS) has been introduced to directly modulate the ongoing rhythmic brain activity by the application of oscillatory currents on the human scalp. Until now the efficiency of tACS in modulating rhythmic brain activity has been indicated only by inference from perceptual and behavioural consequences of electrical stimulation. No direct electrophysiological evidence of tACS has been reported. We delivered tACS over the occipital cortex of 10 healthy participants to entrain the neuronal oscillatory activity in their individual alpha frequency range and compared results with those from a separate group of participants receiving sham stimulation. The tACS but not the sham stimulation elevated the endogenous alpha power in parieto-central electrodes of the electroencephalogram. Additionally, in a network of spiking neurons, we simulated how tACS can be affected even after the end of stimulation. The results show that spike-timing-dependent plasticity (STDP) selectively modulates synapses depending on the resonance frequencies of the neural circuits that they belong to. Thus, tACS influences STDP which in turn results in aftereffects upon neural activity

    Unpredictability of metabolism—the key role of metabolomics science in combination with next-generation genome sequencing

    Get PDF
    Next-generation sequencing provides technologies which sequence whole prokaryotic and eukaryotic genomes in days, perform genome-wide association studies, chromatin immunoprecipitation followed by sequencing and RNA sequencing for transcriptome studies. An exponentially growing volume of sequence data can be anticipated, yet functional interpretation does not keep pace with the amount of data produced. In principle, these data contain all the secrets of living systems, the genotype–phenotype relationship. Firstly, it is possible to derive the structure and connectivity of the metabolic network from the genotype of an organism in the form of the stoichiometric matrix N. This is, however, static information. Strategies for genome-scale measurement, modelling and predicting of dynamic metabolic networks need to be applied. Consequently, metabolomics science—the quantitative measurement of metabolism in conjunction with metabolic modelling—is a key discipline for the functional interpretation of whole genomes and especially for testing the numerical predictions of metabolism based on genome-scale metabolic network models. In this context, a systematic equation is derived based on metabolomics covariance data and the genome-scale stoichiometric matrix which describes the genotype–phenotype relationship

    Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence

    Get PDF
    The present study demonstrates that tDCS can alter WM performance by modulating the underlying neural oscillations. This result can be considered an important step towards a better understanding of the mechanisms involved in tDCS-induced modulations of WM performance, which is of particular importance, given the proposal to use electrical brain stimulation for the therapeutic treatment of memory deficits in clinical settings

    Aberrant Expression of Oncogenic and Tumor-Suppressive MicroRNAs in Cervical Cancer Is Required for Cancer Cell Growth

    Get PDF
    MicroRNAs (miRNAs) play important roles in cancer development. By cloning and sequencing of a HPV16+ CaSki cell small RNA library, we isolated 174 miRNAs (including the novel miR-193c) which could be grouped into 46 different miRNA species, with miR-21, miR-24, miR-27a, and miR-205 being most abundant. We chose for further study 10 miRNAs according to their cloning frequency and associated their levels in 10 cervical cancer- or cervical intraepithelial neoplasia-derived cell lines. No correlation was observed between their expression with the presence or absence of an integrated or episomal HPV genome. All cell lines examined contained no detectable miR-143 and miR-145. HPV-infected cell lines expressed a different set of miRNAs when grown in organotypic raft cultured as compared to monolayer cell culture, including expression of miR-143 and miR-145. This suggests a correlation between miRNA expression and tissue differentiation. Using miRNA array analyses for age-matched normal cervix and cervical cancer tissues, in combination with northern blot verification, we identified significantly deregulated miRNAs in cervical cancer tissues, with miR-126, miR-143, and miR-145 downregulation and miR-15b, miR-16, miR-146a, and miR-155 upregulation. Functional studies showed that both miR-143 and miR-145 are suppressive to cell growth. When introduced into cell lines, miR-146a was found to promote cell proliferation. Collectively, our data indicate that downregulation of miR-143 and miR-145 and upregulation of miR-146a play a role in cervical carcinogenesis

    De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects

    Get PDF
    Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function

    De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects.

    Get PDF
    Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function

    Acute Pain and a Motivational Pathway in Adult Rats: Influence of Early Life Pain Experience

    Get PDF
    The importance of neonatal experience upon behaviour in later life is increasingly recognised. The overlap between pain and reward pathways led us to hypothesise that neonatal pain experience influences reward-related pathways and behaviours in adulthood
    corecore