
Buongiorno and Zhou Forest Ecosystems  (2015) 2:4 
DOI 10.1186/s40663-015-0030-y

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref
RESEARCH ARTICLE Open Access
Adaptive economic and ecological forest
management under risk
Joseph Buongiorno1* and Mo Zhou2
Abstract

Background: Forest managers must deal with inherently stochastic ecological and economic processes. The future
growth of trees is uncertain, and so is their value. The randomness of low-impact, high frequency or rare catastrophic
shocks in forest growth has significant implications in shaping the mix of tree species and the forest landscape. In
addition, the fluctuations of wood prices influence greatly forest revenues.

Methods: Markov decision process models (MDPs) offer a rigorous and practical way of developing optimum
management strategies, given these multiple sources of risk.

Results: Examples illustrate how such management guidelines are obtained with MDPs for combined ecological
and economic objectives, including diversity of tree species and size, landscape diversity, old growth preservation, and
carbon sequestration.

Conclusions: The findings illustrate the power of the MDP approach to deal with risk in forest resource management.
They recognize that the future is best viewed in terms of probabilities. Given these probabilities, MDPs tie optimum
adaptive actions strictly to the state of the forest and timber prices at decision time. The methods are theoretically
rigorous, numerically efficient, and practical for field implementation.
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Background
Forest planning and decision making models are often
deterministic. They assume that the future is known, or
they reduce uncertain variables to their expected values,
with the hope that the results will work, at least “on
average”. However, the future is highly uncertaina, and it
can only be described in terms of probabilities, be they
“objective probabilities” derived from factual data, or
“subjective probabilities” reflecting a personal belief (de
Finetti 1937).
There is a large literature concerning the role of risk

in forest ecosystems (see e.g. Kant and Alavalapati 2014,
p. 307–369). But there are few applications of Markov
decision process models (MDPs) in forestry, a paucity also
observed in the general operations research literature
(White 1993). Nevertheless, MDPs are powerful and gen-
eral methods that deserve more attention in forest man-
agement. This was recognized early on in Lembersky and
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Johnson (1975), and Lembersky (1976) who dealt with ap-
plications to the management of forest plantations. Their
pioneering work was followed by several applications to
the uneven-aged management of various forest types for fi-
nancial objectives (Kaya and Buongiorno 1987), ecological
objectives (Zhou and Buongiorno 2006), and combined fi-
nancial and ecological objectives (Lin and Buongiorno
1998; Rollin et al. 2005; Zhou et al. 2008a, b).
The purpose of this paper is to describe how stochastic

simulation and MDPs can be used to deal with decision
making under risk in forestry. The data and the specific
applications described below deal with mixed loblolly
pine (Pinus taeda L.)-hardwood stands in the southern
United States. However, the methods are general and can be
applied to a variety of forest ecosystems, ranging from even-
aged monospecific plantations to mixed-species uneven-
aged forests, and from single stands to large forest areas.
The objective throughout is to develop simple adaptive
management guidelines that can be readily applied in
the field.
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Table 1 Definition of forest stand states according to
basal area level by species and tree size

Pines (m2 · ha−1) Hardwoods (m2 · ha−1)

Small Medium Large Small Medium Large

Low ≤2.5 ≤4.3 ≤3.6 ≤2.9 ≤1.2 ≤1.7

High >2.5 >4.3 >3.6 >2.9 >1.2 >1.7

State #13 0 0 1 1 0 0

The example state #13 has high basal area in large pine trees and small
hardwoods, and low basal area in other categories. Source: Zhou and
Buongiorno (2006).
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The paper is organized as follows. The next section
presents the methods: stochastic forest growth models
and their reduction to Markov chains which are then
used for prediction and optimization. This is followed by
the results which show first some of the consequences
of (wrongly) predicting the evolution of forest ecosys-
tems without taking into account the effects of random
ecological, climatic, or economic shocks. Next are shown
predictions of the long-term evolution of forest ecosys-
tems with and without management and the implica-
tions for economic and ecological criteria. And, MDP
results optimizing decisions adaptively for discounted
or undiscounted economic and ecological objectives,
and combinations thereof. The discussion and conclu-
sion deal with limitations of the methods and poten-
tial improvements.
Methods
The guiding principle of the methods is to represent the
evolution of a forest ecosystem subject to various impact
variables, such as prices and catastrophic disturbances,
with Markov chains: probability matrices describing
the frequencies of transition of each variable between
discrete states. After the transition probabilities be-
tween the system states have been determined, the Markov
model is used to predict future system states subject to
specific management policies. Furthermore, decision
process models (MDPs), optimization techniques based
on Markov chains, are used to determine the best man-
agement policy for a particular objective. A policy is a set
of rules that prescribe a decision for each observed system
state at decision time. Various adaptive strategies are ob-
tained in this way depending on the objective function
which may deal with discounted or undiscounted criteria
and constraints that may limit the decision domain.
Markov forest model
The different possible states of a forest stand are de-
scribed in a practical manner by the level of basal area
in trees of different sizes and species. Basal area per hec-
tare, the sum of the cross sectional area of the trees, typ-
ically measured at breast height, is one of the simplest
measures of forest stand density and composition. To be
practical, the number of tree size and species categories
should be kept lowb. For example Table 1 shows the def-
inition of forest stand states used here, with the basal
area in three tree size classes (small, medium, large), and
two species categories (softwoods, hardwoods). With two
levels of basal area, high or low, indicating below average
or above average basal area in each species and size cat-
egory, there are 26 = 64 possible stand states. The example
stand state #13 in Table 1, denoted (001, 100) has high
basal area in large pine trees and small hardwood trees,
and low basal area in the other categories (Zhou and
Buongiorno 2006).
In MDPs, the evolution of stands over time is described

by T = [p(s’|s)], a matrix of yearly transition probabilities
between stand states s and s’. These probabilities cannot
be established directly by direct observation due to lack of
sufficient data in each stand. Simulation methods are used
instead. A typical stochastic simulation model of stand
growth suitable for this purpose has the form:

ytþ1 ¼ Gtyt þ it þ εt ð1Þ

where yt = [yijt] is the vector of the number of trees per
unit area of species i and size j at time t. Gt is a matrix
of parameters describing the probability that a tree of a
particular species stays alive and grows into a higher size
class from t to t + 1. The vector it refers to recruitment,
the number of trees of a particular species that enters
the smallest diameter class from t to t + 1. Both Gt and it
vary depending on the stand condition, yt, through the
stand density that affects tree growth and recruitment. εt
is a vector of random disturbances.
In the following applications the parameters of model

(1) are estimated from observations on permanent sam-
ple plots in the mixed loblolly pine (Pinus taeda L.)-
hardwood forests of the Southern United States (Schulte
et al. 1998)c. The differences between the deterministic
predictions of model (1), and the observations on the
plots give observations on the random shocks εt due to
ice storms, wind, insect outbreaks, abnormal weather,
etc.… that have affected forest growth during the obser-
vation period (Zhou and Buongiorno 2004).
To get the transition probabilities between stand states

p(s’|s) model (1) is used to predict the future stand state,
s’, of a random initial stand in state s, by bootstrapping
a random shock εt from the set of the observed shocks.
This is repeated a sufficient number of times to obtain
stable estimates of the transition probabilities p(s’|s) (Zhou
2005, p. 51).
Due to the short time typically covered by plot obser-

vations, the transition probability matrix T = [p(s’|s)] ob-
tained in this manner reflects mostly small scale, high
frequency disturbances. In addition, catastrophic, low
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frequency events, such as hurricanes must be added
where needed, based on weather and geographic data.
Table 2 shows the non-zero elements of the 64 × 64
transition probability matrix computed in this way and
used in the results of this paper. The entry in row and
column 000,000 means that if a stand has now low basal
area in all species and size categories, the probability is
0.797 that it will be in the same state next year. The
entry in row 000,000 and column 000,001 means that the
same stand has a 0.027 probability of growing into a stand
with high basal area in the largest size class. Table 2 also
indicates that regardless of its current state, there is a
0.025 probability that the stand will be next year in state
000,000 due to a catastrophic event, a hurricane in this ex-
ample (Zhou and Buongiorno 2006).
The resulting T matrix is then used to predict future

states:

Πtþ1 ¼ ΠtT t ¼ 0; 1; 2… ð2Þ
where Πt = [πst] is the vector of probabilities of stand state s
at time t, and the steady-state probabilities, Π =Πt =Πt + 1

are obtained by solving the system of equations:

Π I−Tð Þ ¼ 0 ð3Þ
where Π = [πs] is the vector of long-term steady state
probabilities for each stand state s, and I is the identity
matrix. As equation (3) indicates, the long-term prob-
abilities are independent of the initial state. Each prob-
ability is also interpreted as the fraction of a large forest
landscape that is in each state s in the long run when
only natural disturbances occur. As indicated below, an
equation equivalent to (3) can also be used to predict
the steady state probabilities when a particular manage-
ment regime is followed indefinitely.

Markov price model
The financial returns from forest management depend
critically on the price of wood. Perfect prediction of future
prices is not possible, but probable price levels and
changes can be drawn from the behavior of past prices. In
parallel with the procedure for forest stands, the method
describes market fluctuations by transition probabilities
between price levels. For example, based on past data
prices may be classified as low, medium, or high. And the
transition probabilities between price levels are obtained
from a price model such asd:

Qt ¼ αþ βQt−1 þ νt ð4Þ
where Qt is the price in year t and α, β are parameters
estimated by regression analysis of past data. The matrix
of transition probabilities between price levels is M =
[p(m’|m)] where p(m’|m) is the probability that next
year’s price level is m’ given the current price level m.
These probabilities are obtained by simulations and re-
peated sampling from the distribution of the residual vt.
An example of price transition probabilities used later in
this paper is in Table 3 (Zhou 2005). Given a currently
low price level (less than $84 · m−3), the probability that it
will be low following year is 0.82. The probability that it
will be medium (between $84 · m−3 and $94 · m−3) is 0.10,
and the probability that it will be high (above $94 · m−3)
is 0.08. Table 3 illustrates the high price autocorrelation
(price stickiness): there is a high probability that the price
stays at the same level from year to year.

System states and transition probabilities
Given transition probability matrices between stand states
T = [p(s’|s)] and price levels M = [p(m’|m)], the transition
probabilities of the forest-price system are:

S ¼ p j iÞ� ¼ p s′ sÞp m′ mÞ�jðjð½jð½ ð5Þ
where i is the current system state (stand state s and price
level m), and j is next year’s system state (stand state s’ and
price level m’). For example, with the 64 stand states in
Table 2 and the three price levels in Table 3, there are 192
system states and 192 × 192 transition probabilities.

Decisions and immediate rewards
Decisions consist in moving instantly from one stand
state to another by harvesting some of the trees. It is as-
sumed that market prices are exogenous, i.e. the deci-
sions have no effect on prices. A decision produces a
stand state with less basal area, less carbon sequestered
in the stand, and a different composition of tree species
and size. It also generates revenues that depend on the
volume of timber harvested and on the price at decision
timee. A policy consists of a set of decisions applied sys-
tematically to each stand-price state. If the policy is ap-
plied to an entire forest, decisions alter the distribution
of stand states and thus the landscape diversity, and pos-
sibly the part of the forest that stays in an old-growth
(late-seral) state.
Ecological criteria include a variety of indices concern-

ing the state of the stand and of the landscape induced
by a policy. Although several diversity indices are pos-
sible (Magurran 1988), Shannon’s index (Shannon 1948)
was used here throughout. For example, applied to tree
species diversity Shannon’s index is:

H ¼ −
Xn
a¼1

f a ln f að Þ ð6Þ

where H is the tree-species diversity of a stand state, fa
is the fraction of trees of species a, and n is the number
of species. The fraction fa is preferably based on the basal
area of trees rather than their number, to give more
importance to the large trees. With this index, species



Table 2 Transition probabilities between stand states

State # at t Stand compositiona1 State # at t + 1 year (transition probability)

1 000,000 1(0.797), 2(0.027), 3(0.011), 5(0.055), 9(0.062), 17(0.019), 33(0.029)

2 000,001 1(0.025), 2(0.782), 4(0.014), 6(0.064), 10(0.053), 18(0.027), 34(0.035)

3 000,010 1(0.025), 3(0.78), 4(0.029), 7(0.049), 11(0.064), 19(0.025), 35(0.028)

4 000,011 1(0.025), 4(0.817), 8(0.049), 12(0.059), 20(0.022), 36(0.027)

5 000,100 1(0.036), 5(0.777), 6(0.022), 7(0.045), 13(0.063), 21(0.028), 37(0.030)

6 000,101 1(0.025), 5(0.010), 6(0.794), 8(0.058), 14(0.053), 22(0.028), 38(0.032)

7 000,110 1(0.025), 7(0.826), 8(0.027), 15(0.067), 23(0.027), 39(0.029)

8 000,111 1(0.025), 8(0.857), 16(0.046), 24(0.031), 40(0.042)

9 001,000 1(0.025), 9(0.842), 10(0.022), 13(0.060), 25(0.025), 41(0.026)

10 001,001 1(0.025), 9(0.016), 10(0.843), 12(0.012), 14(0.052), 26(0.017), 42(0.035)

11 001,010 1(0.025), 11(0.822), 12(0.047), 15(0.050), 27(0.023), 43(0.033)

12 001,011 1(0.025), 12(0.893), 16(0.052), 44(0.030)

13 001,100 1(0.025), 13(0.875), 14(0.018), 15(0.033), 29(0.018), 45(0.031)

14 001,101 1(0.025), 10(0.013), 13(0.010), 14(0.851), 16(0.047), 30(0.023), 46(0.031)

15 001,110 1(0.025), 15(0.850), 16(0.050), 31(0.026), 47(0.050)

16 001,111 1(0.025), 12(0.013), 15(0.013), 16(0.917), 32(0.019), 48(0.013)

17 010,000 1(0.067), 17(0.745), 18(0.020), 21(0.051), 25(0.083), 49(0.034)

18 010,001 1(0.025), 2(0.033), 17(0.012), 18(0.739), 20(0.011), 22(0.054), 26(0.102), 50(0.024)

19 010,010 1(0.025), 3(0.039), 19(0.731), 20(0.026), 23(0.047), 27(0.092), 51(0.030)

20 010,011 1(0.025), 4(0.040), 20(0.750), 24(0.058), 28(0.095), 52(0.032)

21 010,100 1(0.025), 5(0.027), 21(0.763), 22(0.023), 23(0.038), 29(0.099), 53(0.025)

22 010,101 1(0.025), 6(0.036), 18(0.012), 22(0.800), 24(0.036), 30(0.066), 54(0.024)

23 010,110 1(0.025), 7(0.037), 23(0.795), 24(0.030), 31(0.089), 55(0.025)

24 010,111 1(0.025), 8(0.066), 24(0.745), 32(0.120), 56(0.013)

25 011,000 1(0.025), 9(0.035), 25(0.828), 26(0.022), 29(0.061), 57(0.030)

26 011,001 1(0.025), 10(0.039), 26(0.837), 28(0.016), 30(0.053), 58(0.030)

27 011,010 1(0.025), 11(0.036), 27(0.816), 28(0.048), 31(0.045), 59(0.030)

28 011,011 1(0.025), 12(0.040), 28(0.859), 32(0.045), 60(0.031)

29 011,100 1(0.025), 13(0.045), 25(0.012), 29(0.825), 30(0.028), 31(0.041), 61(0.023)

30 011,101 1(0.025), 14(0.031), 30(0.879), 32(0.048), 62(0.017)

31 011,110 1(0.025), 15(0.030), 31(0.863), 32(0.050), 63(0.032)

32 011,111 1(0.025), 16(0.062), 28(0.014), 32(0.872), 64(0.027)

33 100,000 1(0.066), 33(0.738), 34(0.019), 35(0.013), 37(0.050), 41(0.054), 49(0.060)

34 100,001 1(0.025), 2(0.045), 34(0.776), 38(0.050), 42(0.044), 50(0.060)

35 100,010 1(0.025), 3(0.059), 35(0.703), 36(0.056), 39(0.051), 43(0.051), 51(0.055)

36 100,011 1(0.025), 4(0.062), 36(0.702), 40(0.062), 44(0.055), 48(0.011), 52(0.084)

37 100,100 1(0.025), 5/90.038), 37(0.772), 38(0.015), 39(0.040), 45(0.054), 53(0.056)

38 100,101 1(0.025), 6(0.029), 38(0.812), 40(0.023), 46(0.052), 54(0.059)

39 100,110 1(0.025), 7(0.065), 39(0.786), 40(0.020), 47(0.040), 55(0.065)

40 100,111 1(0.025), 8(0.049), 40(0.845), 48(0.031), 56(0.049)

41 101,000 1(0.025), 9(0.047), 41(0.777), 42(0.026), 43(0.011), 45(0.041), 57(0.072)

42 101,001 1(0.025), 10(0.056), 41(0.019), 42(0.780), 46(0.052), 58(0.068)

43 101,010 1(0.025), 11(0.060), 43(0.774), 44(0.027), 47(0.058), 59(0.056)

44 101,011 1(0.025), 12(0.049), 44(0.822), 48(0.049), 60(0.038), 64(0.016)
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Table 2 Transition probabilities between stand states (Continued)

45 101,100 1(0.025), 13(0.058), 41(0.015), 45(0.789), 46(0.023), 47(0.035), 61(0.055)

46 101,101 1(0.025), 14(0.034), 45(0.015), 46(0.810), 48(0.050), 62(0.065)

47 101,110 1(0.025), 15(0.039), 47(0.850), 48(0.043), 63(0.043)

48 101,111 1(0.025), 16(0.074), 48(0.800), 64(0.101)

49 110,000 1(0.025), 17(0.039), 33(0.014), 49(0.752), 50(0.024), 53(0.049), 57(0.098)

50 110,001 1(0.025), 18(0.047), 34(0.025), 50(0.768), 54(0.055), 58(0.079)

51 110,010 1(0.025), 19(0.039), 35(0.018), 51(0.750), 52(0.035), 55(0.046), 59(0.087)

52 110,011 1(0.025), 20(0.051), 28(0.010), 36(0.017), 51(0.014), 52(0.730), 56(0.031), 60(0.122)

53 110,100 1(0.025), 21(0.035), 37(0.021), 53(0.775), 54(0.017), 55(0.031), 61(0.096)

54 110,101 1(0.025), 22(0.032), 38(0.015), 53(0.017), 54(0.783), 56(0.042), 62(0.086)

55 110,110 1(0.025), 23(0.044), 39(0.015), 55(0.783), 56(0.031), 63(0.102)

56 110111 1(0.025), 24(0.061), 40(0.036), 52(0.012), 56(0.757), 64(0.109)

57 111,000 1(0.025), 25(0.062), 41(0.018), 57(0.821), 58(0.023), 61(0.050)

58 111,001 1(0.025), 26(0.036), 42(0.018), 57(0.016), 58(0.852), 62(0.052)

59 111,010 1(0.025), 27(0.058), 43(0.016), 59(0.832), 60(0.033), 63(0.037)

60 111,011 1(0.025), 28(0.025), 44(0.025), 60(0.860), 64(0.064)

61 111,100 1(0.025), 29(0.062), 45(0.014), 61(0.835), 62(0.022), 63(0.043)

62 111,101 1(0.025), 30(0.042), 46(0.019), 58(0.019), 61(0.019), 62(0.842), 64(0.034)

63 111,110 1(0.025), 31(0.036), 47(0.025), 59(0.017), 63(0.846), 64(0.050)

64 111,111 1(0.025), 32(0.068), 48(0.017), 64(0.890)

Source: Zhou and Buongiorno (2006). 1Basal area in pulpwood, small sawtimber, and large saw timber of pines (first three digits), or hardwoods (last three digits)
1 = higher than current average, 0 = lower than current average.
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diversity is between 0 and ln(n), and it is at the max-
imum when fa is the same for all species. The tree
size diversity of a stand state is calculated in a similar
way.
The forest landscape diversity is also expressed simi-

larly with fs, the fraction of the forest landscape in state
s. Another useful criterion is the fraction of the forested
landscape in “old growth” state. For some forest types,
old growth or late-seral stands have been defined in
previous studies (Hummel and Calkin 2005). Here,
old-growth is defined as the most frequent states that
develop in the steady state predicted with equation
(3) in the absence of harvest (Zhou and Buongiorno
2006). With the data in Table 2, the five old-growth states
are 001,011; 001,111; 011,111; 101,111; and 111,111,
which all have high basal area in the largest softwoods and
hardwood trees.
Table 3 Annual transition probability matrix between
price levels

Price t + 1

Low Medium High

Price t < $84 · m−3 [$84 · m−3, $94 · m−3] > $94 · m−3

Low 0.82 0.10 0.08

Medium 0.11 0.78 0.11

High 0.07 0.12 0.81
The data on the expected timber volume and eco-
logical criteria by stand state are obtained during the
simulations with model (1) that give the transition prob-
abilities. The immediate ecological reward of a decision
is the characteristic of the state induced by the decision,
for example, its tree diversity. The immediate financial
reward is equal to the change in volume obtained by
harvesting the stand from the current state to another,
multiplied by the price level at decision time. The car-
bon sequestered was estimated from the amount of
growing stock left after harvest, assuming 1.24 t · m−3 of
CO2e for pulpwood and 1.57 t · m−3 for sawtimber (AFC
2014).
In sum, each immediate reward, monetary or eco-

logical, is summarized by a vector V = [vik] where vik is
the immediate reward when the stand-price system is in
state i and the decision is k (which changes the stand
state or leaves it intact).

Consequences of management policies
A policy, c, is described by a particular decision matrix:

Dc ¼ pc k iÞ�jð½ ð7Þ

where pc(k|i) is the probability of harvesting a stand to
state k, given the stand-price state i under policy c. If the
harvest policy is deterministic (the same action is taken
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all the time in each state) the probability of a particular
decision is 0 or 1. To investigate the consequences of con-
tinuing the current management, independently of the
price level, Dc is based on the frequency at which harvests
have changed the state of the sample plots during the ob-
servation period.
The transition probabilities between stand-price states

given a particular policy are then obtained from:

Ec ¼ pc j iÞ� ¼ pc k iÞp j kÞ�jðjð½jð½ ð8Þ
where pc(j|i) is the probability of ending in stand-price
state j after one period from stand-price state i under
policy c, and p(j|k) is the probability of ending in stand-
price state j after one period from stand state k. Substitut-
ing Ec for T in equation (3) gives the probability vector
Πc ¼ πc

i

� �
where πc

i is the steady state probability of stand-
price state i under policy c.

Predicting expected undiscounted rewards
The expected undiscounted reward, R, such as the ex-
pected tree species diversity, or the expected annual tim-
ber revenue, that results in the long run by following a
specific policy is:

R ¼ V
0
Πc ð9Þ

where V0 ¼ rci
� �

is a row vector of the immediate reward
in stand-price state i under policy c. For financial returns
rci is the timber income when the stand-price state is i
and the policy is c. The expected long-run diversity of
tree species and size, the expected basal area and carbon
sequestered, and the expected annual production under a
particular policy are obtained in similar fashion. The ex-
pected long-run forest landscape diversity is based on
equation (6) where pa is replaced by the steady state prob-
ability of each stand state, πc

s , under the policy c.
The expected interval between harvests (or cutting

cycle), in years, is the inverse of the yearly probability of
a harvest. Let hi

c = 1 if the decision called for by policy c
is a harvest when the stand-price state is i. Then, the an-
nual probability of a harvest is:

πh ¼
X
i

πc
i h

c
i ð10Þ

And the expected cutting cycle is:

C ¼ 1
πh

ð11Þ

Predicting expected discounted rewards
Some criteria are typically discounted, future outcomes
receiving less weight than current ones. This is especially
the case for timber revenues, but ecological criteria may
also be discounted (Boscolo et al. 1997; Howarth 2009).
For a particular management policy, c, the present value
of a criterion is obtained by solving the following system
of equations (Hillier and Lieberman 2005, p. 785):

Vc
i ¼ rci

þ 1
1þ ρ

X
j

pc j i

�
Vc

j ∀i
����

�
ð12Þ

where Vc
i is the present value of the criterion of interest

over an infinite horizon for an initial stand-price state i,
when the harvest policy c is followed, with an immediate
reward rci and a yearly interest rate ρ. In the results pre-
sented below, the interest rate was set at 3.08% per year,
the real yield on AAA corporate bonds from 2001 to
2013, using the consumer price index as deflator (U.S.
Government 2014). This choice implies a long-term,
low-risk investment by a conservative investor.

Then, the average expected present value per ha over
an entire forest with a particular initial distribution of
stands and probability of price level is:

PV ¼
X192
i¼1

Vc
iπ

0
i ð13Þ

where π0
i is the initial probability of stand-price state i.

Optimizing management policies
In parallel with the predictions of the effects of specific
management policies, the optimization of policies differs
depending on whether the rewards are discounted or
undiscounted.

Optimizing expected discounted rewards
The policy that maximizes an expected discounted reward
over an infinite horizon, such as the net present value of
the timber income, without any other constraint, is found
by solving the following linear programming program, ori-
ginally due to d’Epenoux (1963).

maxyij
X
i

X
k

rikyik

subject to:X
k

yjk−
1

1þ ρ

X
i

X
k

pðjji; kÞyik ¼ βj ∀j

yik≥0∀i; k ð14Þ

where yik is the total discounted probability of being in
state i and making decision k over an infinite horizonf. βj
is the probability that the system starts in stand-price
state j. This probability must be strictly positive, i.e. βj >
0 and

X
j

βj ¼ 1. After finding the best solution, y�ik , the
best decisions are obtained from:



XX
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Dik ¼ y�ikX
k

y�ik
∀i; k ð15Þ

where D
ik is the probability of making decision k when

the stand-price state is i. The optimal policy is determin-
istic (Dik = 0 or 1), and it is independent of the initial
condition, i.e. of the βj’s (Hillier and Lieberman 2005, p. 921),
although the value of the objective function, the maximum
discounted value of the reward, depends very much on
the initial conditiong.

Optimizing expected undiscounted rewards
Another linear program gives the policy that maximizes
an unconstrained undiscounted reward (Manne 1960).
Examples of undiscounted criteria are the expected spe-
cies diversity observed yearly in steady state, or the ex-
pected annual wood harvest.

maxyij
X
i

X
k

rikzik

subject to:

X
k

zjk−
X
i

X
k

p j i; kÞzik ¼ 0 ∀jjð
ð16Þ

where zik is the steady-state probability of stand-price
state i and decision k.
Given the best solution, z�ik, the corresponding best de-

cisions are:

D
0
ik
¼ z�ikX

k

z�ik
∀i; k ð17Þ

The best decisions obtained with equation (17) are still
deterministic (D’ik = 0 or 1) and independent of the initial
stand-price state. And, the maximum value of the objective
function, such as the maximum expected undiscounted
species diversity over an infinite time horizon, is also inde-
pendent of the initial condition.

Multiple objectives
Policies that best meet multiple objectives simultaneously
are obtained by modifying the objective function of models
(14) and (16), or/and by adding constraints. In the results
shown below the models were kept linear by expressing
both the objective function and the constraints in undis-
counted or discounted terms.
For example, in a discounted framework, a policy that

maximizes the net present value of timber income, while
keeping a specific fraction of the forest area in old growth
state, is obtained with a model consisting of equations
(14)–(15) and the additional constraint:
i k

oikyik≥αO
� ð18Þ

where oik = 1 if state k is an old-growth state, oik = 0
otherwise. O* is the maximum, unconstrained, discounted
value of the fraction of old growth, obtained with model
(16) to (17), and α is the desired fraction of this maximum
that must be maintained by the policy.

As an example of an undiscounted framework, the max-
imum expected annual harvest that keeps the sequestered
carbon dioxide equivalent (CO2e) at a specific level is ob-
tained by solving model (16)–(17) with rik equal to the
amount of timber harvest resulting from decision k in
state i, and the additional constraint:

X
i

X
k

cikyik≥C
� ð19Þ

where cik is the amount of CO2e stored in the stand state
that results from decision k in state i, and C* is the de-
sired expected value of the stored CO2e.

Results
Effects of disturbances on predicted stand growth
Figure 1 illustrates the importance of recognizing random
shocks in predicting the evolution of forest ecosystems.
The data result from long-term simulations of a forest
stand of mixed hardwoods-loblolly pines in the south of
the United States, growing without human intervention
(Zhou and Buongiorno 2004). The figure shows long-term
predictions of total stand basal area, and basal area of pine
trees. The continuous line refers to predictions obtained
with the deterministic part only of model (1), ignoring the
random shocks, εt. The jagged shows instead the predic-
tions obtained with the random shocks reflecting the
high-frequency, low impact disturbances derived from the
plot data, without catastrophic events.
While the total basal area is qualitatively similar for both

models, the predictions of the basal area of pine trees are
very different. Ignoring the random shocks, pines totally
disappear in about 300 years. Instead, when the random
disturbances are taken into account the basal area of the
pine trees is never less than 20 m2 · ha−1, about a third of
the total basal area. Forest scientists agree that stochastic
disturbances “can be a major determinant of forest struc-
ture” (Oliver and Larson 1990). In the case of loblolly
pine, recurrent fires are typical in the south of the United
States. Lobllolly pines are more fire resistant than hard-
woods. Fires also cause openings that favor pine regener-
ation. The simulations with stochastic shocks are thus
more likely to predict correctly the long-term evolution of
loblolly pine-hardwood stands than the deterministic
version.



Figure 1 Simulated total basal area (a) and basal area of pine trees (b) in an uneven-aged loblolly pine stand with a deterministic
model (smooth line) or a stochastic model with low-impact high-frequency shocks but no catastrophic event (jagged line). Source:
Zhou and Buongiorno (2004).
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Effects of catastrophes on forest landscape
In addition to the high-frequency, low-impact distur-
bances, the forests are also subject to low-frequency ca-
tastrophes, such as hurricanes in the region investigated
here. The long-term effects of catastrophic events on the
forest landscape were predicted with the Markov model
in Table 2, with and without the 0.025 probability of a
catastrophe appearing in the first column. The fraction
of the landscape that would be present in the long run
(steady state) in each of the 64 possible states was pre-
dicted with equation (3).
Figure 2a shows the prediction without catastrophic

events, while Figure 2b shows the prediction with catas-
trophes. Both figures show the fraction of the landscape
area occupied in the steady state by each of the five old-
growth states, and the aggregate fraction occupied by
the 59 other states. Without catastrophic disturbances,
81% of the landscape was in an old growth state, and 38%
consisted of stands in state #16 (001,111) with high basal
area in hardwoods in all three size categories, and high
basal area in large pine trees. However, when catastrophic
events were taken into account, only 29% of the landscape
was in an old-growth state and the dominant old-growth
state #16 occupied only 12% of the landscape area. In
sum, the long-run expected diversity of the forest land-
scape measured with Shannon’s index (6) was 80% higher
due to catastrophic disturbances than it would have been
without them.

Economic and ecological consequences of current
management
The economic consequences of the current management,
were expressed by the net present value (NPV) of timber
income over an infinite horizon. The NPV was derived



Figure 2 Expected distribution of forest area in steady state, without catastrophic disturbances (a) and with catastrophic disturbances (b).
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with equation (12) with the initial distribution of stands
reflected in the plot data and a low initial price levelh.
Other consequences, such as the annual wood production
and the diversity indices were undiscounted expected
values in steady state, obtained with equation (9), while
equation (11) gave the expected length of the cutting
cycle. The results in Table 4 compare the consequences of
the current management with those arising from forest
growth alone without management.
Continuing the current management indefinitely gen-
erated an NPV of $1,339 · ha−1 in timber revenues and an
average expected production of 1.9 m3 · ha−1 · y−1 over the
entire forest. Due to this harvest the expected average
basal area was 2 m2 · ha−1 lower with the current manage-
ment than it would be without human intervention.
Using the diversity indices without management as a

basis of comparison, the current management increased
tree species diversity slightly (1%). Like catastrophic events,



Table 4 Long-term effects of the current management on
economic return and ecological criteria, compared with
the outcome without management

Criteria Unit With current
management

Without
management

NPV of harvested wood $.ha−1 1339 –

Sawtimber harvest m3 · ha−1 · y−1 1.5 –

Pulpwood harvest m3 · ha−1 · y−1 0.4 –

Basal area m2 · ha−1 19 22

Species diversitya % 101 100

Size diversitya % 98 100

Landscape diversitya % 103 100

Old growth fraction % 18 29

CO2e sequestered t.ha−1 203 244

Cutting cycle year 11 –
aRelative to the level without management.

Buongiorno and Zhou Forest Ecosystems  (2015) 2:4 Page 10 of 15
management also increased landscape diversity, though to
a lesser extent (3%). However, by harvesting large trees it
decreased the expected tree size diversity by 2%.
The fraction of old-growth in the forest maintained by

the current management was 11% lower than it would
be in a natural forest, and the value of the average car-
bon sequestration was 42 t · ha−1 lower. All these out-
comes stemmed from harvests in individual stands that
occurred at average intervals of 7 years under the current
management.

Optimizing financial objectives
The policy that maximized the expected NPV was ob-
tained by solving model (14)–(15), with a uniform distri-
bution of initial stand-price states (i.e. βj = 1/192 ∀ j).
This best policy was then used to obtain with equations
(12)–(13) the expected NPV given the stand states distri-
bution in the region of interest, as reflected by the plot
data, and the current price level (“low” in 2014 accord-
ing to the definitions in Table 3).
The results in Table 5 show how the best decisions

adapted to the stand state and price level observed at deci-
sion time. For example, for a stand in state #64 (111,111),
at low price, the best decision was to cut the stand to state
#52 (110,011) by reducing the basal area of the large pine
trees and of the small hardwood trees. If instead the
current price was average, the best decision was to cut
the stand to state #3 (000,010) which meant reducing fur-
ther the basal area of the small and medium pine trees.
Last, if the price was high, the best decision was to reach
stand state #1 (000,000) by reducing the basal area to a
low level in all species and size categories. In contrast,
under current management, the plot data revealed that a
stand in this same state #64 (111,111) was left intact 85%
of the time and cut to state #44 (101,011) only 15% of
the time.
The expected consequence of this best financial policy
for timber production and the various ecological indicators
is in Table 6. The expected NPV and annual timber pro-
duction were more than four times higher than with the
current policyi. However, the expected basal area, and the
diversity of tree species and size were all lower. The land-
scape diversity was less than a third of its level with the
current policy, and no old growth was left in the entire
landscape. The amount of CO2e sequestered was less than
half, while the frequency of harvests was about double that
with the current policy.

Optimizing ecological objectives
Two criteria were used as applications of policies that best
meet ecological objectives: maximizing tree species diver-
sity, or carbon sequestration. The results in Table 7 show
that at most, tree species diversity could be 7% higher than
with the current management. Maximizing tree species di-
versity would not hurt financial returns, as in fact the ex-
pected NPV was $713 · ha−1 higher than with the current
management as it led to substantially higher harvest of
sawtimber and pulpwood. This more intensive harvest,
however, reduced the fraction of the forest in old-growth
state by 5 percentage points. Accordingly, the landscape
diversity was reduced by approximately 30%, and the
amount of CO2e sequestered was 52 t · ha−1 less. The tree
size diversity index was also reduced slightly.
Figure 3a shows the expected fraction of the total forest

area in four stand states, starting in the current condition
and evolving over a century with the policy that maxi-
mized the expected tree species diversity. The states in
Figure 3a dominated the steady-state landscape when state
#1 (000,000), with low basal area in all species and size
categories occupied 20% of the forest landscape, state #7
(000,110) with high basal area in small and medium size
hardwoods occupied 14.5%, state #8 (000,111) with in
addition high basal area in large hardwoods occupied
14%, and state #16 (001,111) with in addition high
basal area in large pine trees occupied 13%. With the tree
species maximization policy, state #1 quickly over reached
its steady-state level, while the other states approached it
more slowly.
Figure 3b shows how the tree species diversity index

of the entire forest evolved from its initial level to the
steady state with the policy that maximized expected
tree species diversity. The diversity index is relative to
the steady-state diversity of the unmanaged forest. With
this policy it took approximately 30 years for the species
diversity index to reach 90% of its maximum steady-
state value of 108%.

Maximizing carbon sequestration
The amount of CO2e sequestered in the trees living bio-
mass in steady state could be increased by 42 t · ha−1



Table 5 Management policy that maximizes the net
present value of harvested wood, depending on stand
state and price level

Stand state # Stand composition1 Price

Low Medium High

Best decision2

1 000,000 – – –

2 000,001 1 1 1

3 000,010 – – 1

4 000,011 3 3 1

5 000,100 1 1 1

6 000,101 1 1 1

7 000,110 3 3 1

8 000,111 3 3 1

9 001,000 1 1 1

10 001,001 1 1 1

11 001,010 3 3 1

12 001,011 3 3 1

13 001,100 1 1 1

14 001,101 1 1 1

15 001,110 3 3 1

16 001,111 3 3 1

17 010,000 1 1 1

18 010,001 1 1 1

19 010,010 3 3 1

20 010,011 3 3 1

21 010,100 – 1 1

22 010,101 21 1 1

23 010,110 3 3 1

24 010,111 3 3 1

25 011,000 1 1 1

26 011,001 1 1 1

27 011,010 3 3 1

28 011,011 3 3 1

29 011,100 21 1 1

30 011,101 21 1 1

31 011,110 3 3 1

32 011,111 3 3 1

33 100,000 1 1 1

34 100,001 1 1 1

35 100,010 3 3 1

36 100,011 – 3 1

37 100,100 1 1 1

38 100,101 1 1 1

39 100,110 3 3 1

40 100,111 36 3 1

41 101,000 1 1 1

Table 5 Management policy that maximizes the net
present value of harvested wood, depending on stand
state and price level (Continued)

42 101,001 1 1 1

43 101,010 3 3 1

44 101,011 36 3 1

45 101,100 1 1 1

46 101,101 1 1 1

47 101,110 3 3 1

48 101,111 36 3 1

49 110,000 1 1 1

50 110,001 1 1 1

51 110,010 3 3 1

52 110,011 – 3 1

53 110,100 21 1 1

54 110,101 21 1 1

55 110,110 3 3 1

56 110111 52 3 1

57 111,000 1 1 1

58 111,001 1 1 1

59 111,010 3 3 1

60 111,011 52 3 1

61 111,100 21 1 1

62 111,101 21 1 1

63 111,110 3 3 1

64 111,111 52 3 1
1Basal area in pulpwood, small sawtimber, and large saw timber of pines (first
three digits), or hardwoods (last three digits) 1 = higher than current average,
0 = lower than current average. 2Stand state # resulting from the best harvest
decision, “–” indicates no harvest.

Table 6 Long-term effects of maximizing economic returns
(NPV) from harvested wood on NPV and ecological criteria,
compared with the outcomes due to the current
management

Criteria Unit Current
management

Maximizing
NPV

NPV of harvested wood $ · ha−1 1339 5535

Sawtimber harvest m3 · ha−1 · y−1 1.5 5.3

Pulpwood harvest m3 · ha−1 · y−1 0.4 2.6

Basal area m2 · ha−1 19 12

Species diversitya % 101 96

Size diversitya % 98 89

Landscape diversitya % 103 31

Old growth fraction % 18 0

CO2e sequestered t · ha−1 203 98

Cutting cycle year 11 5
aRelative to the level without management.
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Table 7 Long-term effects of maximizing expected tree species diversity or CO2e sequestered, compared with the
outcome due to the current management

Criteria Unit Current management Maximizing tree species diversity Maximizing CO2e sequestered

NPV of harvested wood $ · ha−1 1339 3363 119

Sawtimber harvest m3 · ha−1 · y−1 1.5 4.3 0.1

Pulpwood harvest m3 · ha−1 · y−1 0.4 1.1 0.1

Basal area m2 · ha−1 19 17 22

Species diversity1 % 101 108 99

Size diversity1 % 98 96 100

Landscape diversity1 % 103 71 101

Old growth fraction % 18 13 15

CO2e sequestered t · ha−1 203 151 245

Cutting cycle year 11 10 86
1Relative to the level without management.

Figure 3 Predicted changes of the expected fraction of forest
area in selected stand states (a), and of the expected tree
species diversity index (b), given the initial distribution of
stand states revealed by the forest inventory and the policy
that maximized tree species diversity. State 1 = (000,000), state
7 = (000,110), state 8 = (000,111), state 16 = (001,111).

Buongiorno and Zhou Forest Ecosystems  (2015) 2:4 Page 12 of 15
compared to the current management (last column of
Table 7), but in doing so, wood production would be
very low (0.2 m3 · ha−1 · y−1). In fact, the level of CO2e se-
questered in this way would be almost the same as that
obtained by letting the forest grow naturally without any
harvest (Table 4, last column). Indeed, the hands-off
option maybe superior as it kept 29% of the landscape in
old-growth state against only 15% when maximizing
CO2e sequestration, at the small opportunity cost of
$119 · ha−1 in foregone NPV from timber revenuesj. The
other criteria were similar to those obtained by natural
forest growth.

Constrained financial and ecological objectives
Figure 4 shows the results of a series of optimizations in
which the objective was to maximize the NPV of timber
revenues given its initial stands distribution and current
low price, subject to increasing constraints on the frac-
tion of old growth maintained on the forestk. Figure 4
documents the opportunity cost, in terms of the NPV
of foregone revenues, of higher levels of old growth.
While approximately $5,300 · ha−1 of NPV could be ob-
tained without any old growth, this was reduced to about
$1500 · ha−1 when 22% of the landscape was kept in old
growth. The marginal cost of old growth increased at in-
creasing levels of old growth, from a low of $368 · ha−1

from 0 to 5% of old growth to a high of $1145 · ha−1 for
21% to 22% of old growth.
As an example of application with multiple ecological

objectives, Figure 5 shows the results of maximizing an-
nual wood production (sawtimber and pulpwood), subject
to constraints on the amount of CO2e sequestered in the
growing stock. Both objectives were undiscounted and
the constraint was as in equation (19). As indicated by
Figure 5, there was no conflict between wood production
and carbon sequestration up to approximately 100 t · ha−1



Figure 4 Maximum net present value (NPV) of harvested wood
at increasing levels of the fraction of the forest landscape kept
in an old-growth state. The old growth fraction is the constant
annual equivalent of the present value of the old growth fraction
over an infinite horizon.
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of CO2e. Beyond that point, wood harvest decreased
rapidly at an increasing rate. Increasing carbon storage
from 100 to 150 t · ha−1 decreased wood production by 1.2
m3 · ha−1 · y−1, and increasing it from 200 to 250 t · ha−1

decreased production by 3.3 m3 · ha−1 · y−1. As shown
above, the maximum carbon storage achievable was about
245 t · ha−1, and at that point there was hardly any wood
harvest.
Figure 5 Maximum expected annual wood harvest at increasing
levels of CO2e stored in growing stock. Both the annual harvest and
the stored CO2e are undiscounted.
Discussion and conclusions
In a 1999 interview, G.B. Dantzig, the inventor of linear
programming, remarked that “all problems that are solved
under deterministic means have that fundamental weak-
ness—they don’t properly take uncertainty into account”
(Dantzig 1999). Forestry planning is no different. Risk, un-
certainty, and stochastic behavior are critical parts of how
forest ecosystems work. As illustrated above, simulations
of mixed loblolly pine-hardwood stands reveal how ignor-
ing random disturbances due to biological or catastrophic
shocks in forest growth models can lead to wrong ecological
predictions, such as the disappearance of pines in this con-
text. To these natural sources of risk must be added the
high risk that stems from price fluctuations which compli-
cates decision making with financial objectives.
The methods suggested in this paper to handle risk in for-

est decision making follow the modeling approach outlined
by Holling et al. (1986). The first step is to “bring the world
to the laboratory” with possibly complex and non-linear sto-
chastic models, and then simplify the models to allow for ef-
ficient optimization with Markov decision process models.
MDPs are attractive for their simplicity while keeping the
essence of planning problems under riskl. They recognize
that the future is unknown and that it may be described
only in terms of probabilities. And, they lead to best adap-
tive management policies whereby decisions depend en-
tirely on the systems state, i.e. the state of knowledge of
the decision maker at decision time.
The fact that with MDP models the future state of a for-

est ecosystem depends only on its current state should
not be viewed as a shortcoming, but recognition of fact.
Predictions can rely only on current knowledge. This
current knowledge may include past behavior of the
system (such as past tree growth) if necessary. Thus,
Markov models are not necessarily “memory less” and
apparent failure of Markov models to correctly represent
forest growth (Binkley 1980; Roberts and Hruska 1986;
Johnson et al. 1991) may be due to incomplete description
of the current ecosystem state rather than to a shortcom-
ing of the Markov model. Similarly, Markov models of
price changes are very general, embracing random walk,
rational expectations, autoregressive, and “any stochas-
tic model in which the price is conditional on previous
prices” (Taylor 1984). In sum, Markov chains allow the
simplification of complex, multi-dimensional stochastic
processes and make their optimization easier or at all pos-
sible (Holling et al. 1986; Insley and Rollins 2005).
There exists considerable potential and flexibility to en-

rich the models presented in this paper as they are relatively
small compared with the size of the problems that can be
solved with current linear programming software. Still, to
be successful in forest ecosystem management the MDPs
should adhere to the general principles of parsimony and
simplicity. To this end, the number of system states must
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be kept as small as possible, with a few state variables (tree
species and size categories, prices) and a few levels of
these variables.
In the same spirit of simplicity, multiple objectives such

as optimizing financial returns subject to ecological con-
straints, of vice-versa, have been treated here with linear
models. This requires expressing both the objective func-
tion and the constraints in either discounted or undis-
counted criteria. While discounting financial returns from
forestry has long been a standard procedure (Faustmann
1849), it is less so for ecological criteria. Nevertheless, it is
plausible to give more weight to the present ecological
characteristics of a forest ecosystem than to their future
values. Indeed, it seems preferable to maintain desirable
current states (such as old-growth stands) rather than lose
them, even if they could be restored later (albeit after a
long delay). It has also been argued on theoretical grounds
that “the future benefits provided by a generic public
good–environmental quality–should be discounted at a
rate that is close to the market rate of return for risk-free
financial assets” (Howarth 2009), a principle that has been
applied for example in discounting future carbon seques-
tered in forests (Boscolo et al. 1997)m.
The methods presented here can be expanded in many

directions, in particular to deal with the new carbon
markets and the highly stochastic prices for CO2e seques-
tered in forests. The treatment is parallel to the stochastic
prices of timber. This would increase substantially the size
of the problem, but still keep it well within the capabilities
of current linear programming software.
Other issues may require deeper modifications, to deal

with non-stationary processes. For example, “climate change
can affect forests by altering the frequency, intensity, dur-
ation, and timing of fire, drought, introduced species, in-
sect and pathogens outbreaks, hurricanes, windstorms, ice
storms, or landslides” (Dale et al. 2001). This implies
a change in the transition probabilities over time. Al-
though non-stationary problems can in principle be con-
verted to stationary ones by a reformulation (Bertsekas
1995, p. 167), efficient numerical methods are still elusive
(Ghate and Smith 2013). Nevertheless, the consequences of
changes in transition probabilities on the steady-state cri-
teria can be readily explored with the methods described in
this paper. In sum, given the conceptual generality and the
well-developed theory of MDPs, coupled with the powerful
solution techniques available, the MDP approach is well
suited to deal with risk in forest ecosystem manage-
ment, and to develop practical adaptive management
policies with both economic and ecological objectives.

Endnotes
aIn this paper the terms “risk” or “uncertainty” are syn-

onymous. Although Knight (1921) defines uncertainty
as the absence of probabilities, it may be argued that
probabilities, objective (data based) or subjective (opinion
based) always exist to some degree.

bWhile modern linear programming software places al-
most no limit (computationally) on the number of states, it
is best for all practical purposes (identifying states of na-
ture, doing the computation, and laying out the recom-
mendations) to use the minimum number of states needed
for sufficient accuracy and realism of applications.

cFor other applications, any stochastic model of forest
growth can be used to compute the transition probabil-
ities used in the MDP approach.

dIf the price series is not stationary, the price data are
first de-trended, and the trend is added to the discount
rate in present value calculations.

eIn the particular application described here, prices
vary by tree size and species, and all the prices change in
parallel with the probabilistic changes of the price index
described in Table 3.

fThat is: yik = z0ik + dz1ik + d2z2ik + d3z3ik +… where ztik
is the probability of state i and decision k at time t and
d = 1/(1 + ρ) is the discount factor (Hillier and Lieberman
2005, p. 921).

gAs applied to forestry, the MDP described by equations
(10) and (11) is a generalization of (Faustmann 1849) for-
mula recognizing that future stand states and prices are
known only as probability distributions. The classical, de-
terministic Faustmann formula is a special case in which
the transition probabilities are 0 or 1 (Buongiorno 2001).

hAccording to Timber Mart South (2014), the average
price of softwood sawtimber stumpage in the South of
the United States in the second quarter of 2014 was $25
per short ton or approximately $19 · m−3, placing it in
the low range according to the definitions in Table 3.

iPrevious results also show that the optimum adaptive
policy derived here is superior in terms of NPV to an
optimum fixed policy that converts stands to a chosen
state at fixed intervals (Zhou et al. 2008b).

jThe reduction in old-growth fraction from 29% to 15%
was due to the best decision calling for a harvest when the
stand was in the old-growth state #32 (011,111). Although
the harvest occurred only every 86 years on average, this
was equivalent to a low frequency natural catastrophe re-
ducing substantially the fraction of the landscape in old-
growth state.

kIn Figure 4, the old growth fraction is the right-hand
side of equation (18) with O* replaced by its annual con-
stant perpetual equivalent, ρO */(1 + ρ).

lSee Buongiorno and Gilless (2003, p. 337–371) for an
introduction to Markov and MDP models in forestry.

mAlternatively, models (10)–(11) and (12–13) can be ex-
tended to deal with discounted objective functions and
undiscounted constraints, or the reverse, by introducing
non-linear constraints (e.g. Rollin et al. 2005; Zhou 2005),
but at the cost of the attendant numerical difficulties.
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