149 research outputs found
Evolutionary Games with Affine Fitness Functions: Applications to Cancer
We analyze the dynamics of evolutionary games in which fitness is defined as
an affine function of the expected payoff and a constant contribution. The
resulting inhomogeneous replicator equation has an homogeneous equivalent with
modified payoffs. The affine terms also influence the stochastic dynamics of a
two-strategy Moran model of a finite population. We then apply the affine
fitness function in a model for tumor-normal cell interactions to determine
which are the most successful tumor strategies. In order to analyze the
dynamics of concurrent strategies within a tumor population, we extend the
model to a three-strategy game involving distinct tumor cell types as well as
normal cells. In this model, interaction with normal cells, in combination with
an increased constant fitness, is the most effective way of establishing a
population of tumor cells in normal tissue.Comment: The final publication is available at http://www.springerlink.com,
http://dx.doi.org/10.1007/s13235-011-0029-
Prepatterning in the Stem Cell Compartment
The mechanism by which an apparently uniform population of cells can generate a heterogeneous population of differentiated derivatives is a fundamental aspect of pluripotent and multipotent stem cell behaviour. One possibility is that the environment and the differentiation cues to which the cells are exposed are not uniform. An alternative, but not mutually exclusive possibility is that the observed heterogeneity arises from the stem cells themselves through the existence of different interconvertible substates that pre-exist before the cells commit to differentiate. We have tested this hypothesis in the case of apparently homogeneous pluripotent human embryonal carcinoma (EC) stem cells, which do not follow a uniform pattern of differentiation when exposed to retinoic acid. Instead, they produce differentiated progeny that include both neuronal and non-neural phenotypes. Our results suggest that pluripotent NTERA2 stem cells oscillate between functionally distinct substates that are primed to select distinct lineages when differentiation is induced
Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis.
Molecular, genetic and pathological evidence suggests that deficits in GABAergic parvalbumin-positive interneurons contribute to schizophrenia pathophysiology through alterations in the brain's excitation-inhibition balance that result in impaired behaviour and cognition. Although the factors that trigger these deficits are diverse, there is increasing evidence that they converge on a common pathological hub that involves NMDA receptor hypofunction and oxidative stress. These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology
On the expected number of internal equilibria in random evolutionary games with correlated payoff matrix
The analysis of equilibrium points in random games has been of great interest
in evolutionary game theory, with important implications for understanding of
complexity in a dynamical system, such as its behavioural, cultural or
biological diversity. The analysis so far has focused on random games of
independent payoff entries. In this paper, we overcome this restrictive
assumption by considering multi-player two-strategy evolutionary games where
the payoff matrix entries are correlated random variables. Using techniques
from the random polynomial theory we establish a closed formula for the mean
numbers of internal (stable) equilibria. We then characterise the asymptotic
behaviour of this important quantity for large group sizes and study the effect
of the correlation. Our results show that decreasing the correlation among
payoffs (namely, of a strategist for different group compositions) leads to
larger mean numbers of (stable) equilibrium points, suggesting that the system
or population behavioural diversity can be promoted by increasing independence
of the payoff entries. Numerical results are provided to support the obtained
analytical results.Comment: Revision from the previous version; 27 page
Evolution of cooperation in stochastic games
Social dilemmas occur when incentives for individuals are misaligned with group interests 1-7 . According to the 'tragedy of the commons', these misalignments can lead to overexploitation and collapse of public resources. The resulting behaviours can be analysed with the tools of game theory 8 . The theory of direct reciprocity 9-15 suggests that repeated interactions can alleviate such dilemmas, but previous work has assumed that the public resource remains constant over time. Here we introduce the idea that the public resource is instead changeable and depends on the strategic choices of individuals. An intuitive scenario is that cooperation increases the public resource, whereas defection decreases it. Thus, cooperation allows the possibility of playing a more valuable game with higher payoffs, whereas defection leads to a less valuable game. We analyse this idea using the theory of stochastic games 16-19 and evolutionary game theory. We find that the dependence of the public resource on previous interactions can greatly enhance the propensity for cooperation. For these results, the interaction between reciprocity and payoff feedback is crucial: neither repeated interactions in a constant environment nor single interactions in a changing environment yield similar cooperation rates. Our framework shows which feedbacks between exploitation and environment - either naturally occurring or designed - help to overcome social dilemmas
Apology and forgiveness evolve to resolve failures in cooperative agreements
Making agreements on how to behave has been shown to be an evolutionarily viable strategy in one-shot social dilemmas. However, in many situations agreements aim to establish long-term mutually beneficial interactions. Our analytical and numerical results reveal for the first time under which conditions revenge, apology and forgiveness can evolve and deal with mistakes within ongoing agreements in the context of the Iterated Prisoners Dilemma. We show that, when the agreement fails, participants prefer to take revenge by defecting in the subsisting encounters. Incorporating costly apology and forgiveness reveals that, even when mistakes are frequent, there exists a sincerity threshold for which mistakes will not lead to the destruction of the agreement, inducing even higher levels of cooperation. In short, even when to err is human, revenge, apology and forgiveness are evolutionarily viable strategies which play an important role in inducing cooperation in repeated dilemmas.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Cost-effective external interference for promoting the evolution of cooperation.
The problem of promoting the evolution of cooperative behaviour within populations of self-regarding individuals has been intensively investigated across diverse fields of behavioural, social and computational sciences. In most studies, cooperation is assumed to emerge from the combined actions of participating individuals within the populations, without taking into account the possibility of external interference and how it can be performed in a cost-efficient way. Here, we bridge this gap by studying a cost-efficient interference model based on evolutionary game theory, where an exogenous decision-maker aims to ensure high levels of cooperation from a population of individuals playing the one-shot Prisoner's Dilemma, at a minimal cost. We derive analytical conditions for which an interference scheme or strategy can guarantee a given level of cooperation while at the same time minimising the total cost of investment (for rewarding cooperative behaviours), and show that the results are highly sensitive to the intensity of selection by interference. Interestingly, we show that a simple class of interference that makes investment decisions based on the population composition can lead to significantly more cost-efficient outcomes than standard institutional incentive strategies, especially in the case of weak selection.</p
Modeling Evolutionary Dynamics of Epigenetic Mutations in Hierarchically Organized Tumors
The cancer stem cell (CSC) concept is a highly debated topic in cancer research.
While experimental evidence in favor of the cancer stem cell theory is
apparently abundant, the results are often criticized as being difficult to
interpret. An important reason for this is that most experimental data that
support this model rely on transplantation studies. In this study we use a novel
cellular Potts model to elucidate the dynamics of established malignancies that
are driven by a small subset of CSCs. Our results demonstrate that epigenetic
mutations that occur during mitosis display highly altered dynamics in
CSC-driven malignancies compared to a classical, non-hierarchical model of
growth. In particular, the heterogeneity observed in CSC-driven tumors is
considerably higher. We speculate that this feature could be used in combination
with epigenetic (methylation) sequencing studies of human malignancies to prove
or refute the CSC hypothesis in established tumors without the need for
transplantation. Moreover our tumor growth simulations indicate that CSC-driven
tumors display evolutionary features that can be considered beneficial during
tumor progression. Besides an increased heterogeneity they also exhibit
properties that allow the escape of clones from local fitness peaks. This leads
to more aggressive phenotypes in the long run and makes the neoplasm more
adaptable to stringent selective forces such as cancer treatment. Indeed when
therapy is applied the clone landscape of the regrown tumor is more aggressive
with respect to the primary tumor, whereas the classical model demonstrated
similar patterns before and after therapy. Understanding these often
counter-intuitive fundamental properties of (non-)hierarchically organized
malignancies is a crucial step in validating the CSC concept as well as
providing insight into the therapeutical consequences of this model
- …
