92 research outputs found

    Comparison of tumour-based (Petersen Index) and inflammation-based (Glasgow Prognostic Score) scoring systems in patients undergoing curative resection for colon cancer

    Get PDF
    After resection, it is important to identify colon cancer patients, who are at a high risk of recurrence and who may benefit from adjuvant treatment. The Petersen Index (PI), a prognostic model based on pathological criteria is validated in Dukes' B and C disease. Similarly, the modified Glasgow Prognostic Score (mGPS) based on biochemical criteria has also been validated. This study compares both the scores in patients undergoing curative resection of colon cancer. A total of 244 patients underwent elective resection between 1997 and 2005. The PI was constructed from pathological reports; the mGPS was measured pre-operatively. The median follow-up was 67 months (minimum 36 months) during which 109 patients died; 68 of them from cancer. On multivariate analysis of age, Dukes' stage, PI and mGPS, age (hazard ratio, HR, 1.74, P=0.001), Dukes' stage (HR, 3.63, P<0.001), PI (HR, 2.05, P=0.010) and mGPS (HR, 2.34, P<0.001) were associated independently with cancer-specific survival. Three-year cancer-specific survival rates for Dukes' B patients with the low-risk PI were 98, 92 and 82% for the mGPS of 0, 1 and 2, respectively (P<0.05). The high-risk PI population is small, in particular for Dukes' B disease (9%). The mGPS further stratifies those patients classified as low risk by the PI. Combining both the scoring systems could identify patients who have undergone curative surgery but are at high-risk of cancer-related death, therefore guiding management and trial stratification

    The relationship between patient physiology and cancer-specific survival following curative resection of colorectal cancer

    Get PDF
    The impact of patient physiology on cancer-specific survival is poorly documented. Patient physiology predicted overall, cancer-specific (Physiology Score>30; HR 8.64 (95% CI 3.00–24.92); P=0.0005) and recurrence-free survival (Physiology Score >30; HR 7.44 (95% CI 1.99–27.73); P=0.003) independent of Dukes stage following potentially curative surgery for colorectal cancer. This independent negative association with survival is a novel observation

    The genome sequence of <i>Trypanosoma brucei gambiense</i>, causative agent of chronic Human African Trypanosomiasis

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; &lt;i&gt;Trypanosoma brucei gambiense&lt;/i&gt; is the causative agent of chronic Human African Trypanosomiasis or sleeping sickness, a disease endemic across often poor and rural areas of Western and Central Africa. We have previously published the genome sequence of a &lt;i&gt;T. b. brucei&lt;/i&gt; isolate, and have now employed a comparative genomics approach to understand the scale of genomic variation between &lt;i&gt;T. b. gambiense&lt;/i&gt; and the reference genome. We sought to identify features that were uniquely associated with &lt;i&gt;T. b. gambiense&lt;/i&gt; and its ability to infect humans.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods and findings:&lt;/b&gt; An improved high-quality draft genome sequence for the group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972 isolate was produced using a whole-genome shotgun strategy. Comparison with &lt;i&gt;T. b. brucei&lt;/i&gt; showed that sequence identity averages 99.2% in coding regions, and gene order is largely collinear. However, variation associated with segmental duplications and tandem gene arrays suggests some reduction of functional repertoire in &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972. A comparison of the variant surface glycoproteins (VSG) in &lt;i&gt;T. b. brucei&lt;/i&gt; with all &lt;i&gt;T. b. gambiense&lt;/i&gt; sequence reads showed that the essential structural repertoire of VSG domains is conserved across &lt;i&gt;T. brucei&lt;/i&gt;.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; This study provides the first estimate of intraspecific genomic variation within &lt;i&gt;T. brucei&lt;/i&gt;, and so has important consequences for future population genomics studies. We have shown that the &lt;i&gt;T. b. gambiense&lt;/i&gt; genome corresponds closely with the reference, which should therefore be an effective scaffold for any &lt;i&gt;T. brucei&lt;/i&gt; genome sequence data. As VSG repertoire is also well conserved, it may be feasible to describe the total diversity of variant antigens. While we describe several as yet uncharacterized gene families with predicted cell surface roles that were expanded in number in &lt;i&gt;T. b. brucei&lt;/i&gt;, no &lt;i&gt;T. b. gambiense&lt;/i&gt;-specific gene was identified outside of the subtelomeres that could explain the ability to infect humans.&lt;/p&gt

    The presence of a systemic inflammatory response predicts poorer survival in patients receiving adjuvant 5-FU chemotherapy following potentially curative resection for colorectal cancer

    Get PDF
    There is increasing evidence that the presence of a systemic inflammatory response plays an important role in survival following curative resection for colorectal cancer. The present study evaluated the relationship between C-reactive protein concentrations and survival in a cohort of patients receiving adjuvant 5-fluorouracil (5-FU) chemotherapy following potentially curative resection for colorectal cancer. In all, 222 patients undergoing potentially curative resection for colorectal cancer were studied. Of these, 50 patients received adjuvant 5-FU-based chemotherapy. Circulating concentrations of C-reactive protein were measured prior to surgery. The minimum follow-up was 15 months; the median follow-up of the survivors was 38 months. During this period 61 patients died, 32 patients of their cancer and 29 of intercurrent disease. In those patients who did not receive adjuvant chemotherapy, age (P<0.001), Dukes stage (P<0.05) and an elevated C-reactive protein (P<0.01) were significantly associated with survival. In those patients who did receive adjuvant chemotherapy, an elevated C-reactive protein concentration (P<0.01) was significantly associated with survival. The presence of a systemic inflammatory response is an independent predictor of poor outcome in patients receiving adjuvant 5-FU-based chemotherapy following potentially curative resection for colorectal cancer

    Animal Ecosystem Engineers Modulate the Diversity-Invasibility Relationship

    Get PDF
    Invasions of natural communities by non-indigenous species are currently rated as one of the most important global-scale threats to biodiversity. Biodiversity itself is known to reduce invasions and increase stability. Disturbances by ecosystem engineers affect the distribution, establishment, and abundance of species but this has been ignored in studies on diversity-invasibility relationships.We determined natural plant invasion into 46 plots varying in the number of plant species (1, 4, and 16) and plant functional groups (1, 2, 3, and 4) for three years beginning two years after the establishment of the Jena Experiment. We sampled subplots where earthworms were artificially added and others where earthworm abundance was reduced. We also performed a seed-dummy experiment to investigate the role of earthworms as secondary seed dispersers along a plant diversity gradient. Horizontal dispersal and burial of seed dummies were significantly reduced in subplots where earthworms were reduced in abundance. Seed dispersal by earthworms decreased with increasing plant species richness and presence of grasses but increased in presence of small herbs. These results suggest that dense vegetation inhibits the surface activity of earthworms. Further, there was a positive relationship between the number of earthworms and the number and diversity of invasive plants. Hence, earthworms decreased the stability of grassland communities against plant invasion.Invasibility decreased and stability increased with increasing plant diversity and, most remarkably, earthworms modulated the diversity-invasibility relationship. While the impacts of earthworms were unimportant in low diverse (low earthworm densities) and high diverse (high floral structural complexity) plant communities, earthworms decreased the stability of intermediate diverse plant communities against plant invasion. Overall, the results document that fundamental processes in plant communities like plant seed burial and invader establishment are modulated by soil fauna calling for closer cooperation between soil animal and plant ecologists

    A Battle Lost? Report on Two Centuries of Invasion and Management of Lantana camara L. in Australia, India and South Africa

    Get PDF
    Recent discussion on invasive species has invigorated the debate on strategies to manage these species. Lantana camara L., a shrub native to the American tropics, has become one of the worst weeds in recorded history. In Australia, India and South Africa, Lantana has become very widespread occupying millions of hectares of land. Here, we examine historical records to reconstruct invasion and management of Lantana over two centuries and ask: Can we fight the spread of invasive species or do we need to develop strategies for their adaptive management? We carried out extensive research of historical records constituting over 75% of records on invasion and management of this species in the three countries. The records indicate that governments in Australia, India and South Africa have taken aggressive measures to eradicate Lantana over the last two centuries, but these efforts have been largely unsuccessful. We found that despite control measures, the invasion trajectory of Lantana has continued upwards and that post-war land-use change might have been a possible trigger for this spread. A large majority of studies on invasive species address timescales of less than one year; and even fewer address timescales of >10 years. An understanding of species invasions over long time-scales is of paramount importance. While archival records may give only a partial picture of the spread and management of invasive species, in the absence of any other long-term dataset on the ecology of Lantana, our study provides an important insight into its invasion, spread and management over two centuries and across three continents. While the established paradigm is to expend available resources on attempting to eradicate invasive species, our findings suggest that in the future, conservationists will need to develop strategies for their adaptive management rather than fighting a losing battle

    Distribution of Corbicula fluminea (Müller, 1774) in the invaded range: a geographic approach with notes on species traits variability

    Get PDF
    Corbicula fluminea is considered one of the most important non-native invasive species (NIS) in aquatic systems mainly due to its widespread distribution and ecological and economic impacts. This species is known to negatively affect native bivalves, also with severe effects on biodiversity and ecosystem functioning. Throughout an exhaustive bibliographic survey and with the aid of Geographic Information Systems tools, this study tracks the species dispersion from its native range, including the description of important physical and environmental barriers. Additional analyses were conducted to examine possible influences of latitudinal/ temperature gradients on important traits (e.g. life span, maximum and mean body length, growth at the end of first year). Altitude and winter minimum temperature appear to be delaying the invasion worldwide, but it seems inevitable that the species will spread across the globe. Latitude and summer temperature show a relationship with growth and life span. Overall, the information gathered in this review may be relevant to forecast future distribution patterns of this NIS, and to anticipate the possible implementation of effective management measures. Moreover, it may constitute a valuabletool inthe prediction of population responses to an increasingly changing environment.This research was supported by FCT (Portuguese Foundation for Science and Technology), through a PhD grant attributed to D. Crespo (SFRH/BD/80252/2011), a post-doc grant attributed to S. Leston (SFRH/BPD/91828/2012) and M Dolbeth (SFRH/BPD/41117/2007) and BIOCHANGED project (PTDC/MAR/111901/2009), subsidized by the European Social Fund and MCTES (Ministério da Ciência, Tecnologia e Ensino Superior) National Funds, through the POPH (Human Potential Operational Programme), QREN (National Strategic Reference Framework) and COMPETE (Programa Operacional Factores de Competitividade).info:eu-repo/semantics/publishedVersio

    Temperature Tolerance and Stress Proteins as Mechanisms of Invasive Species Success

    Get PDF
    Invasive species are predicted to be more successful than natives as temperatures increase with climate change. However, few studies have examined the physiological mechanisms that theoretically underlie this differential success. Because correlative evidence suggests that invasiveness is related to the width of a species' latitudinal range, it has been assumed – but largely untested – that range width predicts breadth of habitat temperatures and physiological thermotolerances. In this study, we use empirical data from a marine community as a case study to address the hypotheses that (1) geographic temperature range attributes are related to temperature tolerance, leading to greater eurythermality in invasive species, and (2) stress protein expression is a subcellular mechanism that could contribute to differences in thermotolerance. We examined three native and six invasive species common in the subtidal epibenthic communities of California, USA. We assessed thermotolerance by exposing individuals to temperatures between 14°C and 31°C and determining the temperature lethal to 50% of individuals (LT50) after a 24 hour exposure. We found a strong positive relationship between the LT50 and both maximum habitat temperatures and the breadth of temperatures experience across the species' ranges. In addition, of the species in our study, invasives tended to inhabit broader habitat temperature ranges and higher maximum temperatures. Stress protein expression may contribute to these differences: the more thermotolerant, invasive species Diplosoma listerianum expressed higher levels of a 70-kDa heat-shock protein than the less thermotolerant, native Distaplia occidentalis for which levels declined sharply above the LT50. Our data highlight differences between native and invasive species with respect to organismal and cellular temperature tolerances. Future studies should address, across a broader phylogenetic and ecosystem scope, whether this physiological mechanism has facilitated the current success of invasive species and could lead to greater success of invasives than native species as global warming continues

    Glucose sensing in the pancreatic beta cell: a computational systems analysis

    Get PDF
    corecore