6,668 research outputs found
Towards Real-Time Detection and Tracking of Spatio-Temporal Features: Blob-Filaments in Fusion Plasma
A novel algorithm and implementation of real-time identification and tracking
of blob-filaments in fusion reactor data is presented. Similar spatio-temporal
features are important in many other applications, for example, ignition
kernels in combustion and tumor cells in a medical image. This work presents an
approach for extracting these features by dividing the overall task into three
steps: local identification of feature cells, grouping feature cells into
extended feature, and tracking movement of feature through overlapping in
space. Through our extensive work in parallelization, we demonstrate that this
approach can effectively make use of a large number of compute nodes to detect
and track blob-filaments in real time in fusion plasma. On a set of 30GB fusion
simulation data, we observed linear speedup on 1024 processes and completed
blob detection in less than three milliseconds using Edison, a Cray XC30 system
at NERSC.Comment: 14 pages, 40 figure
Movement pattern components and mastery of an object control skill with error-reduced learning
Objectives: This paper reports the effects of error-reduced learning on movement components and mastery of overhand throwing in children with and without intellectual disability. Methods: Secondary data analysis was performed on two samples of children (typically developing, TD; intellectual disability, ID) who practiced overhand throwing in either an error-reduced (ER) or error-strewn (ES) condition. Movement pattern components were assessed using a sub-skill of Test of Gross Motor Development-2. Results: In TD participants, ER learners displayed improved follow-through while ES learners did not. Among children with ID, ER learners displayed greater improvements of hip/shoulder rotation and follow-through, than ES learners. Discriminant function analysis confirmed that changes in these components differentiated learning groups. Greater percentage of ER, compared to ES, participants progressed to mastery. Conclusions: With suppressed errors, the follow-through component of overhand throwing is likely to emerge, particularly in children with inferior abilities, and cognitive limitations. Error-reduced learning facilitates mastery
Plasma-Enhanced ALD of TiO2 Thin Films on SUS 304 Stainless Steel for Photocatalytic Application
Plasma-enhanced atomic layer deposition (PE-ALD) of TiO2 thin films using Ti(NMe2)(4) [tetrakis(dimethylamido) Ti] and O-2 plasma were prepared on stainless steel to show the self-cleaning effect. The TiO2 thin films deposited on stainless steel have high growth rate, large surface roughness, and low impurities. The film deposited below 200 degrees C was amorphous, while the films deposited at 300 and 400 degrees C showed anatase and rutile phases, respectively. The contact angle measurements on crystalline PE-ALD TiO2 thin films exhibited superhydrophilicity after UV irradiation. The TiO2 thin film with anatase phase deposited at 300 degrees C showed the highest photocatalytic efficiency, which is higher than on Activ glass or thermal ALD TiO2 films. We suggest that anatase structure and large surface area of TiO2 thin film on stainless steel are the main factors for the high photocatalytic efficiency. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3095515] All rights reserved.X117sciescopu
Growth and dislocation studies of β-HMX
Background: The defect structure of organic materials is important as it plays a major role in their crystal growth
properties. It also can play a subcritical role in “hot-spot” detonation processes of energetics and one such
energetic is cyclotetramethylene-tetranitramine, in the commonly used beta form (β-HMX).
Results: The as-grown crystals grown by evaporation from acetone show prismatic, tabular and columnar habits, all
with {011}, {110}, (010) and (101) faces. Etching on (010) surfaces revealed three different types of etch pits, two of
which could be identified with either pure screw or pure edge dislocations, the third is shown to be an artifact of
the twinning process that this material undergoes. Examination of the {011} and {110} surfaces show only one type
of etch pit on each surface; however their natural asymmetry precludes the easy identification of their Burgers
vector or dislocation type. Etching of cleaved {011} surfaces demonstrates that the etch pits can be associated with
line dislocations. All dislocations appear randomly on the crystal surfaces and do not form alignments characteristic
of mechanical deformation by dislocation slip.
Conclusions: Crystals of β-HMX grown from acetone show good morphological agreement with that predicted by
modelling, with three distinct crystal habits observed depending upon the supersaturation of the growth solution.
Prismatic habit was favoured at low supersaturation, while tabular and columnar crystals were predominant at
higher super saturations. The twin plane in β-HMX was identified as a (101) reflection plane. The low plasticity of
β-HMX is shown by the lack of etch pit alignments corresponding to mechanically induced dislocation arrays.
On untwinned {010} faces, two types of dislocations exist, pure edge dislocations with b = [010] and pure screw
dislocations with b = [010]. On twinned (010) faces, a third dislocation type exists and it is proposed that these pits
are associated with pure screw dislocations with b = [010]
Spontaneous Parity Violation in SUSY Strong Gauge Theory
We suggest simple models of spontaneous parity violation in supersymmetric
strong gauge theory. We focus on left-right symmetric model and investigate
vacuum with spontaneous parity violation. Non-perturbative effects are
calculable in supersymmetric gauge theory, and we suggest two new models. The
first model shows confinement, and the second model has a dual description of
the theory. The left-right symmetry breaking and electroweak symmetry breaking
are simultaneously occurred with the suitable energy scale hierarchy. The
second model also induces spontaneous supersymmetry breaking.Comment: 14 page
Site-specific immobilization of microbes using carbon nanotubes and dielectrophoretic force for microfluidic applications
We developed a microbial immobilization method for successful applications in microfluidic devices. Single-walled nanotubes and Escherichia coli were aligned between two cantilever electrodes by a positive dielectrophoretic force resulting in a film of single-walled nanotubes with attached Escherichia coli. Because this film has a suspended and porous structure, it has a larger reaction area and higher reactant transfer efficiency than film attached to the substrate surface. The cell density of film was easily controlled by varying the cell concentration of the suspension and varying the electric field. The film showed excellent stability of enzyme activity, as demonstrated by measuring continuous reaction and long-term storage times using recombinant Escherichia coli that expressed organophosphorus hydrolase.X1133sciescopu
Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle
Gut microbes might influence host metabolic homeostasis and contribute to the pathogenesis of type 2 diabetes (T2D), which is characterized by insulin resistance. Bacteria-derived extracellular vesicles (EVs) have been suggested to be important in the pathogenesis of diseases once believed to be noninfectious. Here, we hypothesize that gut microbe-derived EVs are important in the pathogenesis of T2D. In vivo administration of stool EVs from high fat diet (HFD)-fed mice induced insulin resistance and glucose intolerance compared to regular diet (RD)-fed mice. Metagenomic profiling of stool EVs by 16S ribosomal DNA sequencing revealed an increased amount of EVs derived from Pseudomonas panacis (phylum Proteobacteria) in HFD mice compared to RD mice. Interestingly, P. panacis EVs blocked the insulin signaling pathway in both skeletal muscle and adipose tissue. Moreover, isolated P. panacis EVs induced typical diabetic phenotypes, such as glucose intolerance after glucose administration or systemic insulin injection. Thus, gut microbe-derived EVs might be key players in the development of insulin resistance and impairment of glucose metabolism promoted by HFD.11148Ysciescopu
Dark Radiation and Dark Matter in Large Volume Compactifications
We argue that dark radiation is naturally generated from the decay of the
overall volume modulus in the LARGE volume scenario. We consider both
sequestered and non-sequestered cases, and find that the axionic superpartner
of the modulus is produced by the modulus decay and it can account for the dark
radiation suggested by observations, while the modulus decay through the
Giudice-Masiero term gives the dominant contribution to the total decay rate.
In the sequestered case, the lightest supersymmetric particles produced by the
modulus decay can naturally account for the observed dark matter density. In
the non-sequestered case, on the other hand, the supersymmetric particles are
not produced by the modulus decay, since the soft masses are of order the heavy
gravitino mass. The QCD axion will then be a plausible dark matter candidate.Comment: 27 pages, 4 figures; version 3: version published in JHE
Is lymphovascular invasion a powerful predictor for biochemical recurrence in pT3 N0 prostate cancer?: Results from the K-CaP database
To assess the impact of lymphovascular invasion (LVI) on the risk of biochemical recurrence (BCR) in pT3 N0 prostate cancer, clinical data were extracted from 1,622 patients with pT3 N0 prostate cancer from the K-CaP database. Patients with neoadjuvant androgen deprivation therapy (n = 325) or insufficient pathologic or follow-up data (n = 87) were excluded. The primary endpoint was the oncologic importance of LVI, and the secondary endpoint was the hierarchical relationships for estimating BCR between the evaluated variables. LVI was noted in 260 patients (21.5%) and was significantly associated with other adverse clinicopathologic features. In the multivariate Cox regression analysis, LVI was significantly associated with an increased risk of BCR after adjusting for known prognostic factors. In the Bayesian belief network analysis, LVI and pathologic Gleason score were found to be first-degree associates of BCR, whereas prostate-specific antigen (PSA) level, seminal vesicle invasion, perineural invasion, and high-grade prostatic intraepithelial neoplasia were considered second-degree associates. In the random survival forest, pathologic Gleason score, LVI, and PSA level were three most important variables in determining BCR of patients with pT3 N0 prostate cancer. In conclusion, LVI is one of the most powerful adverse prognostic factors for BCR in patients with pT3 N0 prostate cancer.1132Ysciescopu
- …
