3,210 research outputs found

    Radio Emission from Ultra-Cool Dwarfs

    Full text link
    The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed that these objects can generate and dissipate powerful magnetic fields. Radio observations provide unparalleled insight into UCD magnetism: detections extend to brown dwarfs with temperatures <1000 K, where no other observational probes are effective. The data reveal that UCDs can generate strong (kG) fields, sometimes with a stable dipolar structure; that they can produce and retain nonthermal plasmas with electron acceleration extending to MeV energies; and that they can drive auroral current systems resulting in significant atmospheric energy deposition and powerful, coherent radio bursts. Still to be understood are the underlying dynamo processes, the precise means by which particles are accelerated around these objects, the observed diversity of magnetic phenomenologies, and how all of these factors change as the mass of the central object approaches that of Jupiter. The answers to these questions are doubly important because UCDs are both potential exoplanet hosts, as in the TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.Comment: 19 pages; submitted chapter to the Handbook of Exoplanets, eds. Hans J. Deeg and Juan Antonio Belmonte (Springer-Verlag

    Using PIV to measure granular temperature in saturated unsteady polydisperse granular flows

    Get PDF
    The motion of debris flows, gravity-driven fast moving mixtures of rock, soil and water can be interpreted using the theories developed to describe the shearing motion of highly concentrated granular fluid flows. Frictional, collisional and viscous stress transfer between particles and fluid characterizes the mechanics of debris flows. To quantify the influence of collisional stress transfer, kinetic models have been proposed. Collisions among particles result in random fluctuations in their velocity that can be represented by their granular temperature, T. In this paper particle image velocimetry, PIV, is used to measure the instantaneous velocity field found internally to a physical model of an unsteady debris flow created by using “transparent soil”—i.e. a mixture of graded glass particles and a refractively matched fluid. The ensemble possesses bulk properties similar to that of real soil-pore fluid mixtures, but has the advantage of giving optical access to the interior of the flow by use of plane laser induced fluorescence, PLIF. The relationship between PIV patch size and particle size distribution for the front and tail of the flows is examined in order to assess their influences on the measured granular temperature of the system. We find that while PIV can be used to ascertain values of granular temperature in dense granular flows, due to increasing spatial correlation with widening gradation, a technique proposed to infer the true granular temperature may be limited to flows of relatively uniform particle size or large bulk

    Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework

    Get PDF
    Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes

    Effect of gender difference on platelet reactivity

    Get PDF
    Background Previous studies have suggested that women do not accrue equal therapeutic benefit from antiplatelet medication as compared with men. The physiological mechanism and clinical implications behind this gender disparity have yet to be established. Methods On-treatment platelet reactivity was determined in 717 men and 234 women on dual antiplatelet therapy, undergoing elective coronary stent implantation. Platelet function testing was performed using arachidonic acid and adenosine diphosphate-induced light transmittance aggregometry (LTA) and the VerifyNow P2Y12 and Aspirin assays. Also the incidence of all-cause death, non-fatal acute myocardial infarction, stent thrombosis and ischaemic stroke was evaluated. Results Women had higher baseline platelet counts than men. Women exhibited a higher magnitude of on-aspirin platelet reactivity using LTA, but not using the VerifyNow Aspirin assay. The magnitude of on-clopidogrel platelet reactivity was significantly higher in women as compared with men with both tests used. The cut-off value to identify patients at risk as well as the incidence of clinical endpoints was similar between women and men (16/234[6.8%] vs. 62/717[8.6%], p=0.38). Conclusion Although the magnitude of platelet reactivity was higher in women, the absolute difference between genders was small and both the cut-off value to identify patients at risk and the incidence of the composite endpoint were similar between genders. Thus, it is unlikely that the difference in platelet reactivity accounts for a worse prognosis in women

    The genomic evolution of human prostate cancer.

    Get PDF
    Prostate cancers are highly prevalent in the developed world, with inheritable risk contributing appreciably to tumour development. Genomic heterogeneity within individual prostate glands and between patients derives predominantly from structural variants and copy-number aberrations. Subtypes of prostate cancers are being delineated through the increasing use of next-generation sequencing, but these subtypes are yet to be used to guide the prognosis or therapeutic strategy. Herein, we review our current knowledge of the mutational landscape of human prostate cancer, describing what is known of the common mutations underpinning its development. We evaluate recurrent prostate-specific mutations prior to discussing the mutational events that are shared both in prostate cancer and across multiple cancer types. From these data, we construct a putative overview of the genomic evolution of human prostate cancer

    Magnetic Coupling in the Quiet Solar Atmosphere

    Full text link
    Three kinds of magnetic couplings in the quiet solar atmosphere are highlighted and discussed, all fundamentally connected to the Lorentz force. First the coupling of the convecting and overshooting fluid in the surface layers of the Sun with the magnetic field. Here, the plasma motion provides the dominant force, which shapes the magnetic field and drives the surface dynamo. Progress in the understanding of the horizontal magnetic field is summarized and discussed. Second, the coupling between acoustic waves and the magnetic field, in particular the phenomenon of wave conversion and wave refraction. It is described how measurements of wave travel times in the atmosphere can provide information about the topography of the wave conversion zone, i.e., the surface of equal Alfv\'en and sound speed. In quiet regions, this surface separates a highly dynamic magnetic field with fast moving magnetosonic waves and shocks around and above it from the more slowly evolving field of high-beta plasma below it. Third, the magnetic field also couples to the radiation field, which leads to radiative flux channeling and increased anisotropy in the radiation field. It is shown how faculae can be understood in terms of this effect. The article starts with an introduction to the magnetic field of the quiet Sun in the light of new results from the Hinode space observatory and with a brief survey of measurements of the turbulent magnetic field with the help of the Hanle effect.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200
    • …
    corecore