465 research outputs found
Constraining Proton Lifetime in SO(10) with Stabilized Doublet-Triplet Splitting
We present a class of realistic unified models based on supersymmetric SO(10)
wherein issues related to natural doublet-triplet (DT) splitting are fully
resolved. Using a minimal set of low dimensional Higgs fields which includes a
single adjoint, we show that the Dimopoulos--Wilzcek mechanism for DT splitting
can be made stable in the presence of all higher order operators without having
pseudo-Goldstone bosons and flat directions. The \mu term of order TeV is found
to be naturally induced. A Z_2-assisted anomalous U(1)_A gauge symmetry plays a
crucial role in achieving these results. The threshold corrections to
alpha_3(M_Z), somewhat surprisingly, are found to be controlled by only a few
effective parameters. This leads to a very predictive scenario for proton
decay. As a novel feature, we find an interesting correlation between the d=6
(p\to e^+\pi^0) and d=5 (p\to \nu-bar K+) decay amplitudes which allows us to
derive a constrained upper limit on the inverse rate of the e^+\pi^0 mode. Our
results show that both modes should be observed with an improvement in the
current sensitivity by about a factor of five to ten.Comment: 21 pages LaTeX, 2 figures, Few explanatory sentences and three new
references added, minor typos corrected
R-parity violation in SU(5)
We show that judiciously chosen R-parity violating terms in the minimal
renormalizable supersymmetric SU(5) are able to correct all the
phenomenologically wrong mass relations between down quarks and charged
leptons. The model can accommodate neutrino masses as well. One of the most
striking consequences is a large mixing between the electron and the Higgsino.
We show that this can still be in accord with data in some regions of the
parameter space and possibly falsified in future experiments.Comment: 30 pages, 1 figure. Revised version. To appear in JHE
A realistic pattern of fermion masses from a five-dimensional SO(10) model
We provide a unified description of fermion masses and mixing angles in the
framework of a supersymmetric grand unified SO(10) model with anarchic Yukawa
couplings of order unity. The space-time is five dimensional and the extra flat
spatial dimension is compactified on the orbifold ,
leading to Pati-Salam gauge symmetry on the boundary where Yukawa interactions
are localised. The gauge symmetry breaking is completed by means of a rather
economic scalar sector, avoiding the doublet-triplet splitting problem. The
matter fields live in the bulk and their massless modes get exponential
profiles, which naturally explain the mass hierarchy of the different fermion
generations. Quarks and leptons properties are naturally reproduced by a
mechanism, first proposed by Kitano and Li, that lifts the SO(10) degeneracy of
bulk masses in terms of a single parameter. The model provides a realistic
pattern of fermion masses and mixing angles for large values of . It
favours normally ordered neutrino mass spectrum with the lightest neutrino mass
below 0.01 eV and no preference for leptonic CP violating phases. The right
handed neutrino mass spectrum is very hierarchical and does not allow for
thermal leptogenesis. We analyse several variants of the basic framework and
find that the results concerning the fermion spectrum are remarkably stable.Comment: 30 pages, 7 figures, 4 table
Spontaneous Parity Violation in SUSY Strong Gauge Theory
We suggest simple models of spontaneous parity violation in supersymmetric
strong gauge theory. We focus on left-right symmetric model and investigate
vacuum with spontaneous parity violation. Non-perturbative effects are
calculable in supersymmetric gauge theory, and we suggest two new models. The
first model shows confinement, and the second model has a dual description of
the theory. The left-right symmetry breaking and electroweak symmetry breaking
are simultaneously occurred with the suitable energy scale hierarchy. The
second model also induces spontaneous supersymmetry breaking.Comment: 14 page
Myocardial fibrosis in Eisenmenger syndrome: a descriptive cohort study exploring associations of late gadolinium enhancement with clinical status and survival
BACKGROUND: A relationship between myocardial fibrosis and ventricular dysfunction has been demonstrated using late gadolinium enhancement (LGE) in the pressure-loaded right ventricle from congenital heart defects. In patients with Eisenmenger syndrome (ES), the presence of LGE has not been investigated. The aims of this study were to detect any myocardial fibrosis in ES and describe major clinical variables associated with the finding. METHODS: From 45 subjects screened, 30 subjects (age 43 ± 13 years, 20 female) underwent prospective cardiovascular magnetic resonance with LGE to quantify biventricular volume and function as well as maximal and submaximal exercise during a single visit. Standard cine acquisitions were obtained for ventricular volume and function. Further imaging was performed after administration of 0.1 mmol/kg gadolinium contrast. Regions of LGE were evaluated qualitatively and quantitatively by manual contouring of identified areas, with total area expressed as a percentage of mass. Patients were followed prospectively (mean follow up 7.4 ± 0.4 years) and any deaths recorded. Patients with LGE findings were compared to those without. RESULTS: LGE was present in 22/30 (73%) patients, specifically in RV myocardium (70%), RV trabeculae (60%), LV myocardium (33%) or LV papillary muscles (30%), though in small amounts (mean 1.4% of total ventricular mass, range 0.16 – 6.0%). Those with any LGE were not different in age, history of arrhythmia, desaturation, nor hemoglobin, nor ventricular size, mass, or function. Exercise capacity was low, but also not different between those with and without LGE. Similarly no significant associations were found with amount of fibrosis. There were five deaths among patients with LGE, versus two in patients without, but no difference in survival (log rank =0.03, P = 0.85). CONCLUSIONS: Myocardial fibrosis by LGE is common in ES, though not extensive. The presence and quantity of LGE did not correlate with ventricular size, function, degree of cyanosis, exercise capacity, or survival in this pilot study. More data are clearly required before recommendations for routine use of LGE in these patients can be made
Characterizing Spatiotemporal Dynamics of Methane Emissions from Rice Paddies in Northeast China from 1990 to 2010
BACKGROUND: Rice paddies have been identified as major methane (CH(4)) source induced by human activities. As a major rice production region in Northern China, the rice paddies in the Three-Rivers Plain (TRP) have experienced large changes in spatial distribution over the recent 20 years (from 1990 to 2010). Consequently, accurate estimation and characterization of spatiotemporal patterns of CH₄ emissions from rice paddies has become an pressing issue for assessing the environmental impacts of agroecosystems, and further making GHG mitigation strategies at regional or global levels. METHODOLOGY/PRINCIPAL FINDINGS: Integrating remote sensing mapping with a process-based biogeochemistry model, Denitrification and Decomposition (DNDC), was utilized to quantify the regional CH(4) emissions from the entire rice paddies in study region. Based on site validation and sensitivity tests, geographic information system (GIS) databases with the spatially differentiated input information were constructed to drive DNDC upscaling for its regional simulations. Results showed that (1) The large change in total methane emission that occurred in 2000 and 2010 compared to 1990 is distributed to the explosive growth in amounts of rice planted; (2) the spatial variations in CH₄ fluxes in this study are mainly attributed to the most sensitive factor soil properties, i.e., soil clay fraction and soil organic carbon (SOC) content, and (3) the warming climate could enhance CH₄ emission in the cool paddies. CONCLUSIONS/SIGNIFICANCE: The study concluded that the introduction of remote sensing analysis into the DNDC upscaling has a great capability in timely quantifying the methane emissions from cool paddies with fast land use and cover changes. And also, it confirmed that the northern wetland agroecosystems made great contributions to global greenhouse gas inventory
LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM
We study the phenomenology of a supersymmetric left-right model, assuming
minimal supergravity boundary conditions. Both left-right and (B-L) symmetries
are broken at an energy scale close to, but significantly below the GUT scale.
Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for
superpotential and soft parameters complete at 2-loop order. At low energies
lepton flavour violation (LFV) and small, but potentially measurable mass
splittings in the charged scalar lepton sector appear, due to the RGE running.
Different from the supersymmetric 'pure seesaw' models, both, LFV and slepton
mass splittings, occur not only in the left- but also in the right slepton
sector. Especially, ratios of LFV slepton decays, such as Br()/Br() are sensitive to the
ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts
a polarization asymmetry of the outgoing positrons in the decay , A ~ [0,1], which differs from the pure seesaw 'prediction' A=1$.
Observation of any of these signals allows to distinguish this model from any
of the three standard, pure (mSugra) seesaw setups.Comment: 43 pages, 17 figure
- …