14,286 research outputs found

    Interaction Between The MEC1-Dependent DNA Synthesis Checkpoint And G1 Cyclin Function In Saccharomyces Cerevisiae

    Get PDF
    The completion of DNA synthesis in yeast is monitored by a checkpoint that requires MEC1 and RAD53. Here we show that deletion of the Saccharomyces cerevisiae G1 cyclins CLN1 and CLN2 suppressed the essential requirement for MEC1 function. Wild-type levels of CLN1 and CLN2, or overexpression of CLN1, CLN2, or CLB5, but not CLN3, killed mec1 strains. We identified RNR1, which encodes a subunit of ribonucleotide reductase, as a high-copy suppressor of the lethality of mec1 GAL1-CLN1. Northern analysis demonstrated that RNR1 expression is reduced by CLN1 or CLN2 overexpression. Because limiting RNR1 expression would be expected to decrease dNTP pools, CLN1 and CLN2 may cause lethality in mec1 strains by causing initiation of DNA replication with inadequate dNTPs. In contrast to mec1 mutants, MEC1 strains with low dNTPs would be able to delay S phase and thereby remain viable. We propose that the essential function for MEC1 may be the same as its checkpoint function during hydroxyurea treatment, namely, to slow S phase when nucleotides are limiting. In a cln1 cln2 background, a prolonged period of expression of genes turned on at the G1-S border, such as RNR1, has been observed. Thus deletion of CLN1 and CLN2 could function similarly to overexpression of RNR1 in suppressing mec1 lethality

    Rayleigh-Benard Convection with a Radial Ramp in Plate Separation

    Get PDF
    Pattern formation in Rayleigh-Benard convection in a large-aspect-ratio cylinder with a radial ramp in the plate separation is studied analytically and numerically by performing numerical simulations of the Boussinesq equations. A horizontal mean flow and a vertical large scale counterflow are quantified and used to understand the pattern wavenumber. Our results suggest that the mean flow, generated by amplitude gradients, plays an important role in the roll compression observed as the control parameter is increased. Near threshold the mean flow has a quadrupole dependence with a single vortex in each quadrant while away from threshold the mean flow exhibits an octupole dependence with a counter-rotating pair of vortices in each quadrant. This is confirmed analytically using the amplitude equation and Cross-Newell mean flow equation. By performing numerical experiments the large scale counterflow is also found to aid in the roll compression away from threshold but to a much lesser degree. Our results yield an understanding of the pattern wavenumbers observed in experiment away from threshold and suggest that near threshold the mean flow and large scale counterflow are not responsible for the observed shift to smaller than critical wavenumbers.Comment: 10 pages, 13 figure

    Finite Size Scaling of Domain Chaos

    Get PDF
    Numerical studies of the domain chaos state in a model of rotating Rayleigh-Benard convection suggest that finite size effects may account for the discrepancy between experimentally measured values of the correlation length and the predicted divergence near onset

    Allied Escort Carriers of the World War Two

    Get PDF

    Tonkin Gulf Yacht Club: U.S. Carrier Operations off Vietnam

    Get PDF

    Integrated system to perform surrogate based aerodynamic optimisation for high-lift airfoil

    Get PDF
    This work deals with the aerodynamics optimisation of a generic two-dimensional three element high-lift configuration. Although the high-lift system is applied only during take-off and landing in the low speed phase of the flight the cost efficiency of the airplane is strongly influenced by it [1]. The ultimate goal of an aircraft high lift system design team is to define the simplest configuration which, for prescribed constraints, will meet the take-off, climb, and landing requirements usually expressed in terms of maximum L/D and/or maximum CL. The ability of the calculation method to accurately predict changes in objective function value when gaps, overlaps and element deflections are varied is therefore critical. Despite advances in computer capacity, the enormous computational cost of running complex engineering simulations makes it impractical to rely exclusively on simulation for the purpose of design optimisation. To cut down the cost, surrogate models, also known as metamodels, are constructed from and then used in place of the actual simulation models. This work outlines the development of integrated systems to perform aerodynamics multi-objective optimisation for a three-element airfoil test case in high lift configuration, making use of surrogate models available in MACROS Generic Tools, which has been integrated in our design tool. Different metamodeling techniques have been compared based on multiple performance criteria. With MACROS is possible performing either optimisation of the model built with predefined training sample (GSO) or Iterative Surrogate-Based Optimization (SBO). In this first case the model is build independent from the optimisation and then use it as a black box in the optimisation process. In the second case is needed to provide the possibility to call CFD code from the optimisation process, and there is no need to build any model, it is being built internally during the optimisation process. Both approaches have been applied. A detailed analysis of the integrated design system, the methods as well as th

    Navigation

    Get PDF
    n/

    Extensive chaos in Rayleigh-Bénard convection

    Get PDF
    Using large-scale numerical calculations we explore spatiotemporal chaos in Rayleigh-Bénard convection for experimentally relevant conditions. We calculate the spectrum of Lyapunov exponents and the Lyapunov dimension describing the chaotic dynamics of the convective fluid layer at constant thermal driving over a range of finite system sizes. Our results reveal that the dynamics of fluid convection is truly chaotic for experimental conditions as illustrated by a positive leading-order Lyapunov exponent. We also find the chaos to be extensive over the range of finite-sized systems investigated as indicated by a linear scaling between the Lyapunov dimension of the chaotic attractor and the system size
    corecore