23,614 research outputs found

    Study of operational parameters impacting helicopter fuel consumption

    Get PDF
    A computerized study of operational parameters affecting helicopter fuel consumption was conducted as an integral part of the NASA Civil Helicopter Technology Program. The study utilized the Helicopter Sizing and Performance Computer Program (HESCOMP) developed by the Boeing-Vertol Company and NASA Ames Research Center. An introduction to HESCOMP is incorporated in this report. The results presented were calculated using the NASA CH-53 civil helicopter research aircraft specifications. Plots from which optimum flight conditions for minimum fuel use that can be obtained are presented for this aircraft. The results of the study are considered to be generally indicative of trends for all helicopters

    Amplitude-equation formalism for four-wave-mixing geometry with transmission gratings

    Get PDF
    An amplitude equation is derived for a four-wave-mixing geometry with nearly counterpropagating, mutually incoherent, nondiffracting pump beams, spatially overlapping in a photorefractive material with a nonlocal response. This equation extends the earlier linear two-dimensional theory to the weakly nonlinear regime. The analysis also starts from a more complete equation for the photorefractive effect, which leads to the prediction of novel effects especially apparent in the nonlinear regime. Precise predictions for the spatiotemporal behavior of the grating amplitude in the nonlinear regime are presented. The range of validity of the amplitude equation is studied. The characteristics of the instability in the nonlinear regime are analyzed through a front-selection analysis

    A vapor barrier for cold testing printed circuit cards

    Get PDF
    Cold testing method prevents formation of frost on printed circuit boards and part holders during testing at sub-zero temperatures. Freon permits rapid attainment of the required testing temperature

    Dual pathway spindle assembly increases both the speed and the fidelity of mitosis

    Get PDF
    Roughly half of all animal somatic cell spindles assemble by the classical prophase pathway, in which the centrosomes separate ahead of nuclear envelope breakdown (NEBD). The remainder assemble by the prometaphase pathway, in which the centrosomes separate following NEBD. Why cells use dual pathway spindle assembly is unclear. Here, by examining the timing of NEBD relative to the onset of Eg5-mEGFP loading to centrosomes, we show that a time window of 9.2 ± 2.9 min is available for Eg5-driven prophase centrosome separation ahead of NEBD, and that those cells that succeed in separating their centrosomes within this window subsequently show .3-fold fewer chromosome segregation errors and a somewhat faster mitosis. A longer time window would allow more cells to complete prophase centrosome separation and further reduce segregation errors, but at the expense of a slower mitosis. Our data reveal dual pathway mitosis in a new light, as a substantive strategy that increases both the speed and the fidelity of mitosis

    Training effectiveness assessment: Methodological problems and issues

    Get PDF
    The U.S. military uses a large number of simulators to train and sustain the flying skills of helicopter pilots. Despite the enormous resources required to purchase, maintain, and use those simulators, little effort has been expended in assessing their training effectiveness. One reason for this is the lack of an evaluation methodology that yields comprehensive and valid data at a practical cost. Some of these methodological problems and issues that arise in assessing simulator training effectiveness, as well as problems with the classical transfer-of-learning paradigm were discussed

    Heat Transport in Mesoscopic Systems

    Full text link
    Phonon heat transport in mesoscopic systems is investigated using methods analogous to the Landauer description of electrical conductance. A "universal heat conductance" expression that depends on the properties of the conducting pathway only through the mode cutoff frequencies is derived. Corrections due to reflections at the junction between the thermal body and the conducting bridge are found to be small except at very low temperatures where only the lowest few bridge modes are excited. Various non-equilibrium phonon distributions are studied: a narrow band distribution leads to clear steps in the cooling curve, analogous to the quantized resistance values in narrow wires, but a thermal distribution is too broad to show such features.Comment: To be published in Superlattices and Microstructures, special issue in honor of Rolf Landauer, March 198

    Transition to an oscillator for double phase-conjugate mirror

    Get PDF
    Summary form only given. Some of the novel quantified characteristics for double phase conjugate mirrors are analysed including the effects of the nonlinearity on the critical dynamics (approach to saturation) and on the spatial distribution of the grating (large scale distortion of the beams and conjugation fidelity) and sensitivity to noise (seeding). The approach used also clarifies the question of linear instability and predicts a new transition to an oscillatory regime

    The stochastic dynamics of nanoscale mechanical oscillators immersed in a viscous fluid

    Get PDF
    The stochastic response of nanoscale oscillators of arbitrary geometry immersed in a viscous fluid is studied. Using the fluctuation-dissipation theorem it is shown that deterministic calculations of the governing fluid and solid equations can be used in a straightforward manner to directly calculate the stochastic response that would be measured in experiment. We use this approach to investigate the fluid coupled motion of single and multiple cantilevers with experimentally motivated geometries.Comment: 5 pages, 5 figure

    The Influence of ZnO Layer Thickness on the Performance and Electrical Bias Stress Instality in ZnO Thin Film Transistors

    Get PDF
    University of Buea supported the first author during the writing of this manuscript Open access articleThin Film Transistors (TFTs) are the active elements for future large area electronic applications, in which low cost, low temperature processes and optical transparency are required. Zinc oxide (ZnO) thin film transistors (TFTs) on SiO2/n+-Si substrate are fabricated with the channel thicknesses ranging from 20 nm to 60 nm. It is found that both the performance and gate bias stress related instabilities of the ZnO TFTs fabricated were influenced by the thickness of ZnO active channel layer. The effective mobility was found to improve with increasing ZnO thickness by up to an order in magnitude within the thickness range investigated (20 – 60 nm). However, thinner films were found to exhibit greater stability in threshold voltage and turn-on voltage shifts with respect to both positive and negative gate bias stress. It was also observed that both the turn on voltage (Von) and the threshold voltage (VT) decrease with increasing channel thickness. Moreover, the variations in subthreshold slope (S) with ZnO thickness as well as variations in VT and Von suggest a possible dependence of trap states in the ZnO on the ZnO thickness. This is further correlated by the dependence of VT and Von instabilities with gate bias stress
    corecore