70 research outputs found

    The accelerated path of ceritinib: Translating pre-clinical development into clinical efficacy

    Get PDF
    Abstract The discovery of anaplastic lymphoma kinase ( ALK )-rearranged non–small-cell lung cancer (NSCLC) in 2007 led to the development and subsequent approval of the ALK inhibitor crizotinib in 2011. However, despite its clinical efficacy, resistance to crizotinib invariably develops. There is now a next generation of ALK inhibitors, including two that have been approved—ceritinib and alectinib—and others that are in development—brigatinib, lorlatinib and X-396. Ceritinib and the other next-generation ALK inhibitors are more potent than crizotinib and can overcome tumor cell resistance mechanisms. Ceritinib gained US Food and Drug Administration approval in 2014 following accelerated review for the treatment of patients with ALK -positive ( ALK +) metastatic NSCLC who have progressed on or are intolerant to crizotinib. In pre-clinical studies, it demonstrated more potent inhibition of ALK than crizotinib in enzymatic assays, more durable responses in xenograft models and the ability to potently overcome crizotinib resistance mutations in vitro (including the gatekeeper mutation). There is also evidence for ceritinib penetration across the blood-brain barrier. In clinical trials, ceritinib has demonstrated durable responses and progression-free survival in ALK-inhibitor–pre-treated and –naive NSCLC patients, including high overall and intracranial response rates in those with central nervous system metastases. Selective gastrointestinal toxicity of ceritinib, such as diarrhea, nausea and vomiting is generally manageable with prophylactic medication and prompt dose reduction or interruption. Future progress in treating ALK + NSCLC will focus on determining the optimal sequencing of therapies and strategies to overcome acquired resistance, an ongoing challenge in treating ALK -mutation–driven tumors

    MYC and human telomerase gene (TERC) copy number gain in early-stage non-small cell lung cancer

    Get PDF
    Objectives: We investigated the frequency of MYC and TERC increased gene copy number (GCN) in early-stage non-small cell lung cancer (NSCLC) and evaluated the correlation of these genomic imbalances with clinicopathologic parameters and outcome. Materials and Methods: Tumor tissues were obtained from 113 resected NSCLCs. MYC and TERC GCNs were tested by fluorescence in situ hybridization (FISH) according to the University of Colorado Cancer Center (UCCC) criteria and based on the receiver operating characteristic (ROC) classification. Results: When UCCC criteria were applied, 41 (36%) cases for MYC and 41 (36%) cases for TERC were considered FISH-positive. MYC and TERC concurrent FISH-positive was observed in 12 cases (11%): 2 (17%) cases with gene amplification and 10 (83%) with high polysomy. By using the ROC analysis, high MYC (mean ≥2.83 copies/cell) and TERC (mean ≥2.65 copies/cell) GCNs were observed in 60 (53.1%) cases and 58 (51.3%) cases, respectively. High TERC GCN was associated with squamous cell carcinoma (SCC) histology (P=0.001). In univariate analysis, increased MYC GCN was associated with shorter overall survival (P=0.032 [UCCC criteria] or P=0.02 [ROC classification]), whereas high TERC GCN showed no association. In multivariate analysis including stage and age, high MYC GCN remained significantly associated with worse overall survival using both the UCCC criteria (P=0.02) and the ROC classification (P=0.008). Conclusions: Our results confirm MYC as frequently amplified in early-stage NSCLC and increased MYC GCN as a strong predictor of worse survival. Increased TERC GCN does not have prognostic impact but has strong association with squamous histology

    Gene identification for risk of relapse in stage I lung adenocarcinoma patients. A combined methodology of gene expression profiling and computational gene network analysis

    Get PDF
    Risk assessment and treatment choice remains a challenge in early non-smallcell lung cancer (NSCLC). The aim of this study was to identify novel genes involved in the risk of early relapse (ER) compared to no relapse (NR) in resected lung adenocarcinoma (AD) patients using a combination of high throughput technology and computational analysis. We identified 18 patients (n.13 NR and n.5 ER) with stage I AD. Frozen samples of patients in ER, NR and corresponding normal lung (NL) were subjected to Microarray technology and quantitative-PCR (Q-PCR). A gene network computational analysis was performed to select predictive genes. An independent set of 79 ADs stage I samples was used to validate selected genes by Q-PCR. From microarray analysis we selected 50 genes, using the fold change ratio of ER versus NR. They were validated both in pool and individually in patient samples (ER and NR) by Q-PCR. Fourteen increased and 25 decreased genes showed a concordance between two methods. They were used to perform a computational gene network analysis that identified 4 increased (HOXA10, CLCA2, AKR1B10, FABP3) and 6 decreased (SCGB1A1, PGC, TFF1, PSCA, SPRR1B and PRSS1) genes. Moreover, in an independent dataset of ADs samples, we showed that both high FABP3 expression and low SCGB1A1 expression was associated with a worse disease-free survival (DFS). Our results indicate that it is possible to define, through gene expression and computational analysis, a characteristic gene profiling of patients with an increased risk of relapse that may become a tool for patient selection for adjuvant therapy

    Functional signaling pathway analysis of lung adenocarcinomas identifies novel therapeutic targets for KRAS mutant tumors

    Get PDF
    Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets. Thirty-four KRAS mutant (MT) and twenty-four KRAS wild-type (WT) frozen biospecimens were obtained from surgically treated lung ADs. Samples were subjected to Laser Capture Microdissection and Reverse Phase Protein Microarray analysis to explore the expression/activation levels of 150 signaling proteins along with coactivation concordance mapping. An independent set of 90 non-small cell lung cancers (NSCLC) was used to validate selected findings by immunohistochemistry (IHC). Compared to KRAS WT tumors, the signaling architecture of KRAS MT ADs revealed significant interactions between KRAS downstream substrates, the AKT/mTOR pathway, and a number of Receptor Tyrosine Kinases (RTK). Approximately one-third of the KRAS MT tumors had ERK activation greater than the WT counterpart (p < 0.01). Notably 18% of the KRAS MT tumors had elevated activation of the Estrogen Receptor alpha (ER-α) (p=0.02).This finding was verified in an independent population by IHC (p=0.03). KRAS MT lung ADs appear to have a more intricate RAS linked signaling network than WT tumors with linkage to many RTKs and to the AKT-mTOR pathway. Combination therapy targeting different nodes of this network may be necessary to treat this group of patients. In addition, for patients with KRAS MT tumors and activation of the ER-α, anti-estrogen therapy may have important clinical implications

    Prognostic impact of alternative splicing-derived hMENA isoforms in resected, node-negative, non-small-cell lung cancer

    Get PDF
    Risk assessment and treatment choice remain a challenge in early non-small-cell lung cancer (NSCLC). Alternative splicing is an emerging source for diagnostic, prognostic and therapeutic tools. Here, we investigated the prognostic value of the actin cytoskeleton regulator hMENA and its isoforms, hMENA(11a) and hMENA Delta v6, in early NSCLC. The epithelial hMENA(11a) isoform was expressed in NSCLC lines expressing E-CADHERIN and was alternatively expressed with hMENA Delta v6. Enforced expression of hMENA Delta v6 or hMENA(11a) increased or decreased the invasive ability of A549 cells, respectively. hMENA isoform expression was evaluated in 248 node-negative NSCLC. High pan-hMENA and low hMENA(11a) were the only independent predictors of shorter disease-free and cancer-specific survival, and low hMENA(11a) was an independent predictor of shorter overall survival, at multivariate analysis. Patients with low pan-hMENA/high hMENA(11a) expression fared significantly better (P <= 0.0015) than any other subgroup. Such hybrid variable was incorporated with T-size and number of resected lymph nodes into a 3-class-risk stratification model, which strikingly discriminated between different risks of relapse, cancer-related death, and death. The model was externally validated in an independent dataset of 133 patients. Relative expression of hMENA splice isoforms is a powerful prognostic factor in early NSCLC, complementing clinical parameters to accurately predict individual patient risk

    Early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up : 2nd ESMO Consensus Conference on Lung Cancer.

    Get PDF
    To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The 2nd ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on non-small-cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, first-line/second and further lines in advanced disease, early-stage disease and locally advanced disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on early-stage disease

    Novel active agents in patients with advanced NSCLC without driver mutations who have progressed after first-line chemotherapy

    Get PDF
    Despite the efficacy of a number of first-line treatments, most patients with advanced-stage non-small cell lung cancer (NSCLC) experience disease progression that warrants further treatment. In this review, we examine the role of novel active agents for patients who progress after first-line therapy and who are not candidates for targeted therapies. More therapeutic options are needed for the management of patients with NSCLC after failure of first-line chemotherapy. A PubMed search was performed for articles from January 2012 to May 2015 using the keywords NSCLC, antiangiogenic, immunotherapy, second-line, novel therapies and English language articles only. Relevant papers were reviewed; papers outside that period were considered on a case-by-case basis. A search of oncology congresses was performed to identify relevant abstracts over this period. In recent years, antiangiogenic agents and immune checkpoint inhibitors have been added to our armamentarium to treat patients with advanced NSCLC who have progressed on first-line chemotherapy. These include nintedanib, a triple angiokinase inhibitor; ramucirumab, a vascular endothelial growth factor receptor-2 antibody; and nivolumab, pembrolizumab and atezolizumab, just three of a growing list of antibodies targeting the programmed death receptor-1 (PD-1)/PD ligand-1 pathway. Predictive and prognostic factors in NSCLC treatment will help to optimise treatment with these novel agents. The approval of new treatments for patients with NSCLC after the failure of first-line chemotherapy has increased options after a decade of few advances, and holds promise for future evolution of the management of NSCLC
    corecore