57 research outputs found
Climbing Fiber Burst Size and Olivary Sub-threshold Oscillations in a Network Setting
The inferior olivary nucleus provides one of the two main inputs to the cerebellum: the so-called climbing fibers. Activation of climbing fibers is generally believed to be related to timing of motor commands and/or motor learning. Climbing fiber spikes lead to large all-or-none action potentials in cerebellar Purkinje cells, overriding any other ongoing activity and silencing these cells for a brief period of time afterwards. Empirical evidence shows that the climbing fiber can transmit a short burst of spikes as a result of an olivary cell somatic spike, potentially increasing the information being transferred to the cerebellum per climbing fiber activation. Previously reported results from in vitro studies suggested that the information encoded in the climbing fiber burst is related to the occurrence of the spike relative to the ongoing sub-threshold membrane potential oscillation of the olivary cell, i.e. that the phase of the oscillation is reflected in the size of the climbing fiber burst. We used a detailed three-compartmental model of an inferior olivary cell to further investigate the possible factors determining the size of the climbing fiber burst. Our findings suggest that the phase-dependency of the burst size is present but limited and that charge flow between soma and dendrite is a major determinant of the climbing fiber burst. From our findings it follows that phenomena such as cell ensemble synchrony can have a big effect on the climbing fiber burst size through dendrodendritic gap-junctional coupling between olivary cells
Dose Effects of Oxaliplatin on Persistent and Transient Na+ Conductances and the Development of Neurotoxicity
BACKGROUND: Oxaliplatin, a platinum-based chemotherapy utilised in the treatment of colorectal cancer, produces two forms of neurotoxicity--acute sensorimotor neuropathic symptoms and a dose-limiting chronic sensory neuropathy. Given that a Na(+) channelopathy has been proposed as the mechanism underlying acute oxaliplatin-induced neuropathy, the present study aimed to determine specific mechanisms of Na(+) channel dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: Specifically the function of transient and persistent Na(+) currents were followed during treatment and were investigated in relation to oxaliplatin dose level. Eighteen patients were assessed before and after a single oxaliplatin infusion with motor and sensory axonal excitability studies performed on the median nerve at the wrist. While refractoriness (associated with Na(+) channel inactivation) was significantly altered post-oxaliplatin infusion in both motor (Pre: 31.7±6.4%; Post: 68.8±14.5%; P≤.001) and sensory axons (Pre: 31.4±5.4%; Post: 21.4±5.5%; P<.05), strength-duration time constant (marker of persistent Na(+) conductances) was not significantly altered post-infusion (Motor Pre: 0.395±0.01 ms; Post: 0.394±0.02 ms; NS; Sensory Pre:0.544±0.03 ms; Post: 0.535±0.05 ms; NS). However, changes in strength-duration time constant were significantly correlated with changes in refractoriness in motor and sensory axons (Motor correlation coefficient = -.65; P<.05; Sensory correlation coefficient = .67; P<.05). CONCLUSIONS/SIGNIFICANCE: It is concluded that the predominant effect of acute oxaliplatin exposure in human motor and sensory axons is mediated through changes in transient rather than persistent Na(+) conductances. These findings are likely to have implications for the design and trial of neuroprotective strategies
An astrocyte-dependent mechanism for neuronal rhythmogenesis
Communication between neurons rests on their capacity to change their firing pattern to encode different messages. For several vital functions, such as respiration and mastication, neurons need to generate a rhythmic firing pattern. Here we show in the rat trigeminal sensori-motor circuit for mastication that this ability depends on regulation of the extracellular Ca2+ concentration ([Ca2+]e) by astrocytes. In this circuit, astrocytes respond to sensory stimuli that induce neuronal rhythmic activity, and their blockade with a Ca2+ chelator prevents neurons from generating a rhythmic bursting pattern. This ability is restored by adding S100b, an astrocytic Ca2+-binding protein, to the extracellular space, while application of an anti-S100b antibody prevents generation of rhythmic activity. These results indicate that astrocytes regulate a fundamental neuronal property: the capacity to change firing pattern. These findings may have broad implications for many other neural networks whose functions depend on the generation of rhythmic activity
Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells
Role of the medulla oblongata in normal and high arterial blood pressure regulation: the contribution of Escola Paulista de Medicina - UNIFESP
Inter-Ictal- and Ictal-Like Epileptic Discharges in the Dendritic Tree of Neocortical Pyramidal Neurons
Therapeutic potential for phenytoin : targeting Nav1.5 sodium channels to reduce migration and invasion in metastatic breast cancer
Voltage-gated Na(+) channels (VGSCs) are heteromeric membrane protein complexes containing pore-forming α subunits and smaller, non-pore-forming β subunits. VGSCs are classically expressed in excitable cells, including neurons and muscle cells, where they mediate action potential firing, neurite outgrowth, pathfinding, and migration. VGSCs are also expressed in metastatic cells from a number of cancers. The Na(v)1.5 α subunit (encoded by SCN5A) is expressed in breast cancer (BCa) cell lines, where it enhances migration and invasion. We studied the expression of SCN5A in BCa array data, and tested the effect of the VGSC-blocking anticonvulsant phenytoin (5,5-diphenylhydantoin) on Na(+) current, migration, and invasion in BCa cells. SCN5A was up-regulated in BCa samples in several datasets, and was more highly expressed in samples from patients who had a recurrence, metastasis, or died within 5 years. SCN5A was also overexpressed as an outlier in a subset of samples, and associated with increased odds of developing metastasis. Phenytoin inhibited transient and persistent Na(+) current recorded from strongly metastatic MDA-MB-231 cells, and this effect was more potent at depolarized holding voltages. It may thus be an effective VGSC-blocking drug in cancer cells, which typically have depolarized membrane potentials. At a concentration within the therapeutic range used to treat epilepsy, phenytoin significantly inhibited the migration and invasion of MDA-MB-231 cells, but had no effect on weakly metastatic MCF-7 cells, which do not express Na(+) currents. We conclude that phenytoin suppresses Na(+) current in VGSC-expressing metastatic BCa cells, thus inhibiting VGSC-dependent migration and invasion. Together, our data support the hypothesis that SCN5A is up-regulated in BCa, favoring an invasive/metastatic phenotype. We therefore propose that repurposing existing VGSC-blocking therapeutic drugs should be further investigated as a potential new strategy to improve patient outcomes in metastatic BCa
Comparison of the hemodynamic changes produced by electrical stimulation of the area postrema and nucleus tractus solitarii in the dog.
- …
