865 research outputs found

    QSO hosts and environments at z=0.9 to 4.2: JHK images with adaptive optics

    Get PDF
    We have observed nine QSOs with redshifts 0.85 to 4.16 at near-IR wavelengths with the adaptive optics bonnette of the Canada-France-Hawaii telescope. Exposure times ranged from 1500 to 24000s (mostly near 7000s) in J, H, or K bands, with pixels 0.035 arcsec on the sky. The FWHM of the co-added images at the location of the quasars are typically 0.16 arcsec. Including another QSO published previously, we find associated QSO structure in at least eight of ten objects, including the QSO at z = 4.16. The structures seen in all cases include long faint features which appear to be tidal tails. In four cases we have also resolved the QSO host galaxy, but find them to be smooth and symmetrical: future PSF removal may expand this result. Including one object previously reported, of the nine objects with more extended structure, five are radio-loud, and all but one of these appear to be in a dense small group of compact galaxy companions. The radio-quiet objects do not occupy the same dense environments, as seen in the NIR. In this small sample we do not find any apparent trends of these properties with redshift, over the range 0.8 < z < 2.4. The colors of the host galaxies and companions are consistent with young stellar populations at the QSO redshift. Our observations suggest that adaptive optic observations in the visible region will exhibit luminous signatures of the substantial star-formation activity that must be occurring.Comment: 22 pages including 10 tables, plus 11 figures. To appear in A

    The Top Ten List of Gravitational Lens Candidates from the HST Medium Deep Survey

    Get PDF
    A total of 10 good candidates for gravitational lensing have been discovered in the WFPC2 images from the HST Medium Deep Survey (MDS) and archival primary observations. These candidate lenses are unique HST discoveries, i.e. they are faint systems with sub-arcsecond separations between the lensing objects and the lensed source images. Most of them are difficult objects for ground-based spectroscopic confirmation or for measurement of the lens and source redshifts. Seven are ``strong lens'' candidates which appear to have multiple images of the source. Three are cases where the single image of the source galaxy has been significantly distorted into an arc. The first two quadruply lensed candidates were reported in Ratnatunga et al 1995 (ApJL, 453, L5) We report on the subsequent eight candidates and describe them with simple models based on the assumption of singular isothermal potentials. Residuals from the simple models for some of the candidates indicate that a more complex model for the potential will probably be required to explain the full structural detail of the observations once they are confirmed to be lenses. We also discuss the effective survey area which was searched for these candidate lens objects.Comment: 26 pages including 12 figures and 10 tables. AJ Vol. 117, No.

    Full-Polarization Observations of OH Masers in Massive Star-Forming Regions: I. Data

    Full text link
    We present full-polarization VLBA maps of the ground-state, main-line, 2 Pi 3/2, J = 3/2 OH masers in 18 Galactic massive star-forming regions. This is the first large polarization survey of interstellar hydroxyl masers at VLBI resolution. A total of 184 Zeeman pairs are identified, and the corresponding magnetic field strengths are indicated. We also present spectra of the NH3 emission or absorption in these star-forming regions. Analysis of these data will be presented in a companion paper.Comment: 111 pages, including 42 figures and 21 tables, to appear in ApJ

    Characterizing the Adaptive Optics Off-Axis Point-Spread Function - I: A Semi-Empirical Method for Use in Natural-Guide-Star Observations

    Full text link
    Even though the technology of adaptive optics (AO) is rapidly maturing, calibration of the resulting images remains a major challenge. The AO point-spread function (PSF) changes quickly both in time and position on the sky. In a typical observation the star used for guiding will be separated from the scientific target by 10" to 30". This is sufficient separation to render images of the guide star by themselves nearly useless in characterizing the PSF at the off-axis target position. A semi-empirical technique is described that improves the determination of the AO off-axis PSF. The method uses calibration images of dense star fields to determine the change in PSF with field position. It then uses this information to correct contemporaneous images of the guide star to produce a PSF that is more accurate for both the target position and the time of a scientific observation. We report on tests of the method using natural-guide-star AO systems on the Canada-France-Hawaii Telescope and Lick Observatory Shane Telescope, augmented by simple atmospheric computer simulations. At 25" off-axis, predicting the PSF full width at half maximum using only information about the guide star results in an error of 60%. Using an image of a dense star field lowers this error to 33%, and our method, which also folds in information about the on-axis PSF, further decreases the error to 19%.Comment: 29 pages, 9 figures, accepted for publication in the PAS

    Geographies of the COVID-19 pandemic

    Get PDF
    The spread of the novel coronavirus (SARS-CoV-2) has resulted in the most devastating global public health crisis in over a century. At present, over 10 million people from around the world have contracted the Coronavirus Disease 2019 (COVID-19), leading to more than 500,000 deaths globally. The global health crisis unleashed by the COVID-19 pandemic has been compounded by political, economic, and social crises that have exacerbated existing inequalities and disproportionately affected the most vulnerable segments of society. The global pandemic has had profoundly geographical consequences, and as the current crisis continues to unfold, there is a pressing need for geographers and other scholars to critically examine its fallout. This introductory article provides an overview of the current special issue on the geographies of the COVID-19 pandemic, which includes 42 commentaries written by contributors from across the globe. Collectively, the contributions in this special issue highlight the diverse theoretical perspectives, methodological approaches, and thematic foci that geographical scholarship can offer to better understand the uneven geographies of the Coronavirus/COVID-19. </jats:p

    Uncovering trophic interactions in arthropod predators through DNA shotgun-sequencing of gut contents

    Get PDF
    Characterizing trophic networks is fundamental to many questions in ecology, but this typically requires painstaking efforts, especially to identify the diet of small generalist predators. Several attempts have been devoted to develop suitable molecular tools to determine predatory trophic interactions through gut content analysis, and the challenge has been to achieve simultaneously high taxonomic breadth and resolution. General and practical methods are still needed, preferably independent of PCR amplification of barcodes, to recover a broader range of interactions. Here we applied shotgun-sequencing of the DNA from arthropod predator gut contents, extracted from four common coccinellid and dermapteran predators co-occurring in an agroecosystem in Brazil. By matching unassembled reads against six DNA reference databases obtained from public databases and newly assembled mitogenomes, and filtering for high overlap length and identity, we identified prey and other foreign DNA in the predator guts. Good taxonomic breadth and resolution was achieved (93% of prey identified to species or genus), but with low recovery of matching reads. Two to nine trophic interactions were found for these predators, some of which were only inferred by the presence of parasitoids and components of the microbiome known to be associated with aphid prey. Intraguild predation was also found, including among closely related ladybird species. Uncertainty arises from the lack of comprehensive reference databases and reliance on low numbers of matching reads accentuating the risk of false positives. We discuss caveats and some future prospects that could improve the use of direct DNA shotgun-sequencing to characterize arthropod trophic networks

    Microlensing in the double quasar SBS1520+530

    Full text link
    We present the results of a monitoring campaign of the double quasar SBS1520+530 at Maidanak observatory from April 2003 to August 2004. We obtained light curves in V and R filters that show small-amplitude \Delta m~0.1 mag intrinsic variations of the quasar on time scales of about 100 days. The data set is consistent with the previously determined time delay of \Delta t=(130+-3) days by Burud et al. (2002). We find that the time delay corrected magnitude difference between the quasar images is now larger by (0.14+-0.03) mag than during the observations by Burud et al. (2002). This confirms the presence of gravitational microlensing variations in this system.Comment: 6 pages, 7 figures. Accepted for publication in A&
    corecore