328 research outputs found
Integration of Dirac-Jacobi structures
We study precontact groupoids whose infinitesimal counterparts are
Dirac-Jacobi structures. These geometric objects generalize contact groupoids.
We also explain the relationship between precontact groupoids and homogeneous
presymplectic groupoids. Finally, we present some examples of precontact
groupoids.Comment: 10 pages. Brief changes in the introduction. References update
Extreme-Point-based Heuristics for the Three-Dimensional Bin Packing problem
One of the main issues in addressing three-dimensional packing problems is finding an efficient and accurate definition of the points at which to place the items inside the bins, because the performance of exact and heuristic solution methods is actually strongly influenced by the choice of a placement rule. We introduce the extreme point concept and present a new extreme point-based rule for packing items inside a three-dimensional container. The extreme point rule is independent from the particular packing problem addressed and can handle additional constraints, such as fixing the position of the items. The new extreme point rule is also used to derive new constructive heuristics for the three-dimensional bin-packing problem. Extensive computational results show the effectiveness of the new heuristics compared to state-of-the-art results. Moreover, the same heuristics, when applied to the two-dimensional bin-packing problem, outperform those specifically designed for the proble
Lie Algebroid Yang Mills with Matter Fields
Lie algebroid Yang-Mills theories are a generalization of Yang-Mills gauge
theories, replacing the structural Lie algebra by a Lie algebroid E. In this
note we relax the conditions on the fiber metric of E for gauge invariance of
the action functional. Coupling to scalar fields requires possibly nonlinear
representations of Lie algebroids. In all cases, gauge invariance is seen to
lead to a condition of covariant constancy on the respective fiber metric in
question with respect to an appropriate Lie algebroid connection.
The presentation is kept in part explicit so as to be accessible also to a
less mathematically oriented audience.Comment: 24 pages, accepted for publication in J. Geom. Phy
A greedy adaptive search procedure for multi-dimensional multi-container packing problems
Tech. Rep. CIRRELT-2012-10, CIRRELT, Montrea
Recommended from our members
A cycle-based evolutionary algorithm for the fixed-charge capacitated multi-commodity network design problem
This paper presents an evolutionary algorithm for the fixed-charge multicommodity network design problem (MCNDP), which concerns routing multiple commodities from origins to destinations by designing a network through selecting arcs, with an objective of minimizing the fixed costs of the selected arcs plus the variable costs of the flows on each arc. The proposed algorithm evolves a pool of solutions using principles of scatter search, interlinked with an iterated local search as an improvement method. New cycle-based neighborhood operators are presented which enable complete or partial re-routing of multiple commodities. An efficient perturbation strategy, inspired by ejection chains, is introduced to perform local compound cycle-based moves to explore different parts of the solution space. The algorithm also allows infeasible solutions violating arc capacities while performing the "ejection cycles", and subsequently restores feasibility by systematically applying correction moves. Computational experiments on benchmark MCNDP instances show that the proposed solution method consistently produces high-quality solutions in reasonable computational times
The synchronized multi-commodity multi-service Transshipment-Hub Location Problem with cyclic schedules
The synchronized multi-commodity multi-service Transshipment-Hub Location Problem is a hub location problem variant faced by a logistics service provider operating in the context of synchromodal logistics. The provider must decide where and when to locate transshipment facilities in order to manage many customers’
origin–destination shipments with release and due dates while minimizing a total cost given by location costs, transportation costs, and penalties related to unmet time constraints. The considered synchromodal network involves different transportation modes (e.g., truck, rail, river and sea navigation) to perform long-haul shipments and the freight synchronization at facilities for transshipment operations. To the best
of our knowledge, this variant has never been studied before. Considering a time horizon in which both transportation services and demand follow a cyclic pattern, we propose a time–space network representation of the problem and an ad-hoc embedding of the time-dependent parameters into the network topology and
the arcs’ weight. This allows to model the flow synchronization required by the problem through a Mixed-Integer Linear Programming formulation with a simplified structure, similar to well-known hub location problems and avoiding complicating constraints for managing the time dimension. Through an extensive experimental campaign conducted over a large set of realistic instances, we present a computational and an economic analysis. In particular, we want to assess the potential benefits of implementing synchromodal logistics operations into long-haul supply-chains managed by large service providers. Since flexibility is one of the main features of synchromodality, we evaluate the impact on decisions and costs of different levels of
flexibility regarding terminals’ operations and customers’ requirements
Scheduled service network design with synchronization and transshipment constraints for intermodal container transportation networks
In this paper we address the problem of scheduled service network design for container freight distribution along rivers, canals, and coastlines. We propose a new concise continuous- time mixed-integer linear programming model that accurately evaluates the time of occurrence of transportation events and the number of containers transshipped between vehicles. Given the transportation network, the eet of available vehicles, the demand and the supply of containers, the sailing time of vehicles, and the structure of costs, the objective of the model is to build a minimum cost service network design and container distribution plan that denes services, their departure and arrival times, as well as vehicle and container routing. The model is solved with a commercial solver and is tested on data instances inspired from real-world problems encountered by EU carrier companies. The results of the computational study show that in scheduled service networks direct routes happen more often when either the eet capacity is tight or the handling costs and the lead time interval increase. The increase of the same parameters leads to the decrease of the number of containers transshipped between vehicles
- …