1,771 research outputs found
A Complex Chemical Potential: Signature of Decay in a Bose-Einstein Condensate
We explore the zero-temperature statics of an atomic Bose-Einstein condensate
in which a Feshbach resonance creates a coupling to a second condensate
component of quasi-bound molecules. Using a variational procedure to find the
equation of state, the appearance of this binding is manifest in a collapsing
ground state, where only the molecular condensate is present up to some
critical density. Further, an excited state is seen to reproduce the usual
low-density atomic condensate behavior in this system, but the molecular
component is found to produce an underlying decay, quantified by the imaginary
part of the chemical potential. Most importantly, the unique decay rate
dependencies on density () and on scattering length () can be measured in experimental tests of this theory.Comment: 4 pages, 1 figur
Detection of 6.7 GHz methanol absorption towards hot corinos
Methanol masers at 6.7 GHz have been found exclusively towards high-mass star
forming regions. Recently, some Class 0 protostars have been found to display
conditions similar to what are found in hot cores that are associated with
massive star formation. These hot corino sources have densities, gas
temperatures, and methanol abundances that are adequate for exciting strong 6.7
GHz maser emission. This raises the question of whether 6.7 GHz methanol masers
can be found in both hot corinos and massive star forming regions, and if not,
whether thermal methanol emission can be detected. We searched for the 6.7 GHz
methanol line towards five hot corino sources in the Perseus region using the
Arecibo radio telescope. To constrain the excitation conditions of methanol, we
observed thermal submillimeter lines of methanol in the NGC1333-IRAS 4 region
with the APEX telescope. We did not detect 6.7 GHz emission in any of the
sources, but found absorption against the cosmic microwave background in
NGC1333-IRAS 4A and NGC1333-IRAS 4B. Using a large velocity gradient analysis,
we modeled the excitation of methanol over a wide range of physical parameters,
and verify that the 6.7 GHz line is indeed strongly anti-inverted for densities
lower than 10^6 cm^-3. We used the submillimeter observations of methanol to
verify the predictions of our model for IRAS 4A by comparison with other CH3OH
transitions. Our results indicate that the methanol observations from the APEX
and Arecibo telescopes are consistent with dense (n ~ 10^6 cm^-3), cold (T ~
15-30 K) gas. The lack of maser emission in hot corinos and low-mass
protostellar objects in general may be due to densities that are much higher
than the quenching density in the region where the radiation field is conducive
to maser pumping.Comment: Accepted by A&
Detection of a new methanol maser line with the Kitt Peak 12-m telescope by remote observing from Moscow
A new methanol maser line 6(-1)-5(0)E at 133 GHz was detected with the 12-m
Kitt Peak radio telescope using remote observation mode from Moscow. Moderately
strong, narrow maser lines were found in DR21(OH), DR21-W, OMC-2, M8E, NGC2264,
L379, W33-Met. The masers have similar spectral features in other transitions
of methanol-E at 36 and 84 GHz, and in transitions of methanol-A at 44 and 95
GHz. All these are Class I transitions, and the new masers also belong to Class
I. In two other methanol transitions near 133 GHz, 5(-2)-6(-1)E and
6(2)-7(1)A+, only thermal emission was detected in some sources. Several other
sources with wider lines in the transition 6(-1)-5(0)E also may be masers,
since they do not show any emission at the two other methanol transitons near
133 GHz. These are NGC2071, S231, S255, GGD27, also known as Class I masers.
The ratio of intensities and line widths of the 133 GHz masers and 44 GHz
masers is consistent with the saturated maser model, in which the line
rebroadening with respect to unsaturated masers is suppressed by cross
relaxation due to elastic collisions.Comment: 4 pages, AASTeX text, uses aasms4.sty, 2 Postscript figures, to be
published in Ap
Enhancement of the Two-channel Kondo Effect in Single-Electron boxes
The charging of a quantum box, coupled to a lead by tunneling through a
single resonant level, is studied near the degeneracy points of the Coulomb
blockade. Combining Wilson's numerical renormalization-group method with
perturbative scaling approaches, the corresponding low-energy Hamiltonian is
solved for arbitrary temperatures, gate voltages, tunneling rates, and energies
of the impurity level. Similar to the case of a weak tunnel barrier, the shape
of the charge step is governed at low temperatures by the non-Fermi-liquid
fixed point of the two-channel Kondo effect. However, the associated Kondo
temperature TK is strongly modified. Most notably, TK is proportional to the
width of the level if the transmission through the impurity is close to unity
at the Fermi energy, and is no longer exponentially small in one over the
tunneling matrix element. Focusing on a particle-hole symmetric level, the
two-channel Kondo effect is found to be robust against the inclusion of an
on-site repulsion on the level. For a large on-site repulsion and a large
asymmetry in the tunneling rates to box and to the lead, there is a sequence of
Kondo effects: first the local magnetic moment that forms on the level
undergoes single-channel screening, followed by two-channel overscreening of
the charge fluctuations inside the box.Comment: 21 pages, 19 figure
Two-channel Kondo model as a generalized one-dimensional inverse square long-range Haldane-Shastry spin model
Majorana fermion representations of the algebra associated with spin, charge,
and flavor currents have been used to transform the two-channel Kondo
Hamiltonian. Using a path integral formulation, we derive a reduced effective
action with long-range impurity spin-spin interactions at different imaginary
times. In the semiclassical limit, it is equivalent to a one-dimensional
Heisenberg spin chain with two-spin, three-spin, etc. long-range interactions,
as a generalization of the inverse-square long-range Haldane-Shastry spin
model. In this representation the elementary excitations are "semions", and the
non-Fermi-liquid low-energy properties of the two-channel Kondo model are
recovered.Comment: 4 pages, no figure, to be published in J. Phys.: Condens. Matter,
200
Selforganized 3-band structure of the doped fermionic Ising spin glass
The fermionic Ising spin glass is analyzed for arbitrary filling and for all
temperatures. A selforganized 3-band structure of the model is obtained in the
magnetically ordered phase. Deviation from half filling generates a central
nonmagnetic band, which becomes sharply separated at T=0 by (pseudo)gaps from
upper and lower magnetic bands. Replica symmetry breaking effects are derived
for several observables and correlations. They determine the shape of the
3-band DoS, and, for given chemical potential, influence the fermion filling
strongly in the low temperature regime.Comment: 13 page
Non-equilibrium excitation of methanol in Galactic molecular clouds: multi-transitional observations at 2 mm
We observed 14 methanol transitions near lambda=2 mm in Galactic star-forming
regions. Broad, quasi-thermal J(0)-J(-1)E methanol lines near 157 GHz were
detected toward 73 sources. Together with the 6(-1)-5(0)E and 5(-2)-6(-1)E
lines at 133 GHz and the 7(1)-7(0)E line at 165 GHz, they were used to study
the methanol excitation. In the majority of the observed objects, the Class I
6(-1)-5(0)E transition is inverted, and the Class II 5(-2)-6(-1)E and
6(0)-6(-1)E transitions are overcooled. This is exactly as predicted by models
of low gain Class I masers. The absence of the inversion of Class II
transitions 5(-2)-6(-1)E and 6(0)-6(-1)E means that quasi-thermal methanol
emission in all objects arises in areas without a strong radiation field, which
is required for the inversion.Comment: 23 pages paper (uses aasms4.sty), 12 pages tables (uses apjpt4.sty),
10 Jpeg figures, submitted to the ApJ
Magnetically Robust Non-Fermi Liquid Behavior in Heavy Fermion Systems with f^2-Configuration: Competition between Crystalline-Electric-Field and Kondo-Yosida Singlets
We study a magnetic field effect on the Non-Fermi Liquid (NFL) which arises
around the quantum critical point (QCP) due to the competition between the
f^2-crystalline-electric-field singlet and the Kondo-Yosida singlet states by
using the numerical renormalization ground method. We show the characteristic
temperature T_F^*, corresponding to a peak of a specific heat, is not affected
by the magnetic field up to H_z^* which is determined by the distance from the
QCP or characteristic energy scales of each singlet states. As a result, in the
vicinity of QCP, there are parameter regions where the NFL is robust against
the magnetic field, at an observable temperature range T > T_F^*, up to H_z^*
which is far larger than T_F^* and less than min(T_{K2}, $Delta).Comment: 8 pages, 9 figur
Spin and orbital effects of Cooper pairs coupled to a single magnetic impurity
The Kondo effect strongly depends on spin and orbital degrees of freedom of
unconventional superconductivity. We focus on the Kondo effect in the -wave and -wave superconductors to compare the
magnetic properties of the spin-triplet and spin-singlet Cooper pairs. The
difference appears when both of the paired electrons couple to a local spin
directly. For the -wave, the ground state is always a spin doublet
for a local spin, and it is always a spin singlet for
. The latter is due to uniaxial spin anisotropy of the triplet
Cooper pair. For the -wave, the interchange of ground
states occurs, which resembles a competition between the Kondo effect and the
superconducting energy gap in s-wave superconductors. Thus the internal degrees
of freedom of Cooper pairs give a variety to the Kondo effect.Comment: 7 pages, 6 figures, RevTex, to be published in Phys. Rev.
- …