575 research outputs found

    Effects of coupling between octahedral tilting and polar modes on the phase diagram of PbZr1-xTixO3 (PZT)

    Full text link
    The results are presented of anelastic and dielectric spectroscopy measurements on large grain ceramic PZT with compositions near the two morphotropic phase boundaries (MPBs) that the ferroelectric (FE) rhombohedral phase has with the Zr-rich antiferroelectric and Ti-rich FE tetragonal phases. These results are discussed together with similar data from previous series of samples, and reveal new features of the phase diagram of PZT, mainly connected with octahedral tilting and its coupling with the polar modes. Additional evidence is provided of what we interpret as the onset of the tilt instability, when is initially frustrated by lattice disorder, and the long range order is achieved at lower temperature. Its temperature T_IT(x) prosecutes the long range tilt instability line T_T(x) up to T_C, when T_T. It is proposed that the difficulty of seeing the expected 1/2 modulations in diffraction experiments is due to the large correlation volume associated with that type of tilt fluctuations combined with strong lattice disorder. It is shown that the lines of the tilt instabilities tend to be attracted and merge with those of polar instabilities. Not only T_IT bends toward T_C and then merges with it, but in our series of samples the temperature T_MPB of the dielectric and anelastic maxima at the rhombohedral/tetragonal MPB does not cross T_T, but deviates remaining parallel or possibly merging with T_T. These features, together with a similar one in NBT-BT, are discussed in terms of cooperative coupling between tilt and FE instabilities, which may trigger a common phase transition. An analogy is found with recent simulations of the tilt and FE transitions in multiferroic BiFeO3. An abrupt change is found in the shape of the anelastic anomaly at T_T when x passes from 0.465 to 0.48, possibly indicative of a rhombohedral/monoclinic boundary.Comment: 15 pages, 11 figure

    Piezoelectric softening in ferroelectrics: ferroelectric versus antiferroelectric PbZr1−x_{1-x}Tix_{x}O3_{3}

    Get PDF
    The traditional derivation of the elastic anomalies associated with ferroelectric (FE) phase transitions in the framework of the Landau theory is combined with the piezoelectric constitutive relations instead of being explicitly carried out with a definite expression of the FE part of the free energy. In this manner it is shown that the softening within the FE phase is of electrostrictive and hence piezoelectric origin. Such a piezoelectric softening may be canceled by the better known piezoelectric stiffening, when the piezoelectric charges formed during the vibration are accompanied by the depolarization field, as for example in Brillouin scattering experiments. As experimental validation, we present new measurements on Zr-rich PZT, where the FE phase transforms into antiferroelectric on cooling or doping with La, and a comparison of existing measurements made on FE PZT with low frequency and Brillouin scattering experiments

    Effects of aging and annealing on the polar and antiferrodistortive components of the antiferroelectric transition in PZT

    Full text link
    The antipolar and antiferrodistortive (AFD) components of the antiferroelectric (AFE) transition in PbZr1-xTixO3 (x=0.054) can occur separately and with different kinetics, depending on the sample history, and are accompanied by elastic softening and stiffening, respectively. Together with the softening that accompanies octahedral tilting in the fraction of phase that is not yet transformed into AFE, they give rise to a variety of shapes of the curves of the elastic compliance versus temperature. All such anomalies found in samples with x=0.046 and 0.054, in addition to those already studied at x=0.050, can be fitted consistently with a phenomenological model based on the simple hypothesis that each of the polar and AFD transitions produces a step in the elastic modulus, whose position in temperature and width reflect the progress of each transition. The slowing of the kinetics of the transformations is correlated with the formation of defect structures during aging in the ferroelectric or AFE state, which are also responsible for a progressive softening of the lattice with time and thermal cycling, until annealing at high temperature recovers the initial conditions

    Correlation between molecular orbitals and doping dependence of the electrical conductivity in electron-doped Metal-Phthalocyanine compounds

    Full text link
    We have performed a comparative study of the electronic properties of six different electron-doped metal phthalocyanine (MPc) compounds (ZnPc, CuPc, NiPc, CoPc, FePc, and MnPc), in which the electron density is controlled by means of potassium intercalation. In spite of the complexity of these systems, we find that the nature of the underlying molecular orbitals produce observable effects in the doping dependence of the electrical conductivity of the materials. For all the MPc's in which the added electrons are expected to occupy orbitals centered on the ligands (ZnPc, CuPc, and NiPc), the doping dependence of the conductivity has an essentially identical shape. This shape is different from that observed in MPc materials in which electrons are also added to orbitals centered on the metal atom (CoPc, FePc, and MnPc). The observed relation between the macroscopic electronic properties of the MPc compounds and the properties of the molecular orbitals of the constituent molecules, clearly indicates the richness of the alkali-doped metal-phthalocyanines as a model class of compounds for the investigation of the electronic properties of molecular systems

    Tuning the electronic transport properties of graphene through functionalisation with fluorine

    Get PDF
    Engineering the electronic properties of graphene has triggered great interest for potential applications in electronics and opto-electronics. Here we demonstrate the possibility to tune the electronic transport properties of graphene monolayers and multilayers by functionalisation with fluorine. We show that by adjusting the fluorine content different electronic transport regimes can be accessed. For monolayer samples, with increasing the fluorine content, we observe a transition from electronic transport through Mott variable range hopping in two dimensions to Efros - Shklovskii variable range hopping. Multilayer fluorinated graphene with high concentration of fluorine show two-dimensional Mott variable range hopping transport, whereas CF0.28 multilayer flakes have a band gap of 0.25eV and exhibit thermally activated transport. Our experimental findings demonstrate that the ability to control the degree of functionalisation of graphene is instrumental to engineer different electronic properties in graphene materials.Comment: 6 pages, 5 figure

    Direct observation of a gate tunable band-gap in electrical transport in ABC-trilayer graphene

    Full text link
    Few layer graphene systems such as Bernal stacked bilayer and rhombohedral (ABC-) stacked trilayer offer the unique possibility to open an electric field tunable energy gap. To date, this energy gap has been experimentally confirmed in optical spectroscopy. Here we report the first direct observation of the electric field tunable energy gap in electronic transport experiments on doubly gated suspended ABC-trilayer graphene. From a systematic study of the non-linearities in current \textit{versus} voltage characteristics and the temperature dependence of the conductivity we demonstrate that thermally activated transport over the energy-gap dominates the electrical response of these transistors. The estimated values for energy gap from the temperature dependence and from the current voltage characteristics follow the theoretically expected electric field dependence with critical exponent 3/23/2. These experiments indicate that high quality few-layer graphene are suitable candidates for exploring novel tunable THz light sources and detectors.Comment: Nano Letters, 2015 just accepted, DOI: 10.1021/acs.nanolett.5b0077

    Double-gated graphene-based devices

    Full text link
    We discuss transport through double gated single and few layer graphene devices. This kind of device configuration has been used to investigate the modulation of the energy band structure through the application of an external perpendicular electric field, a unique property of few layer graphene systems. Here we discuss technological details that are important for the fabrication of top gated structures, based on electron-gun evaporation of SiO2_2. We perform a statistical study that demonstrates how --contrary to expectations-- the breakdown field of electron-gun evaporated thin SiO2_2 films is comparable to that of thermally grown oxide layers. We find that a high breakdown field can be achieved in evaporated SiO2_2 only if the oxide deposition is directly followed by the metallization of the top electrodes, without exposure to air of the SiO2_2 layer.Comment: Replaced with revised version. To appear on New Journal of Physic
    • …
    corecore