10 research outputs found
Inhibition of Hippocampal Synaptic Activity by ATP, Hypoxia or Oxygen-Glucose Deprivation Does Not Require CD73
Adenosine, through activation of its A1 receptors, has neuroprotective effects during hypoxia and ischemia. Recently, using transgenic mice with neuronal expression of human equilibrative nucleoside transporter 1 (hENT1), we reported that nucleoside transporter-mediated release of adenosine from neurons was not a key mechanism facilitating the actions of adenosine at A1 receptors during hypoxia/ischemia. The present study was performed to test the importance of CD73 (ecto-5′-nucleotidase) for basal and hypoxic/ischemic adenosine production. Hippocampal slice electrophysiology was performed with CD73+/+ and CD73−/− mice. Adenosine and ATP had similar inhibitory effects in both genotypes, with IC50 values of approximately 25 µM. In contrast, ATP was a less potent inhibitor (IC50 = 100 µM) in slices from mice expressing hENT1 in neurons. The inhibitory effects of ATP in CD73+/+ and CD73−/− slices were blocked by the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and were enhanced by the nucleoside transport inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBTI), consistent with effects that are mediated by adenosine after metabolism of ATP. AMP showed a similar inhibitory effect to ATP and adenosine, indicating that the response to ATP was not mediated by P2 receptors. In comparing CD73−/− and CD73+/+ slices, hypoxia and oxygen-glucose deprivation produced similar depression of synaptic transmission in both genotypes. An inhibitor of tissue non-specific alkaline phosphatase (TNAP) was found to attenuate the inhibitory effects of AMP and ATP, increase basal synaptic activity and reduce responses to oxygen-glucose deprivation selectively in slices from CD73−/− mice. These results do not support an important role for CD73 in the formation of adenosine in the CA1 area of the hippocampus during basal, hypoxic or ischemic conditions, but instead point to TNAP as a potential source of extracellular adenosine when CD73 is absent
DIRAS2 is associated with adult ADHD, related traits, and co-morbid disorders
Several linkage analyses implicated the chromosome 9q22 region in attention deficit/hyperactivity disorder (ADHD), a neurodevelopmental disease with remarkable persistence into adulthood. This locus contains the brain-expressed GTP-binding RAS-like 2 gene (DIRAS2) thought to regulate neurogenesis. As DIRAS2 is a positional and functional ADHD candidate gene, we conducted an association study in 600 patients suffering from adult ADHD (aADHD) and 420 controls. Replication samples consisted of 1035 aADHD patients and 1381 controls, as well as 166 families with a child affected from childhood ADHD. Given the high degree of co-morbidity with ADHD, we also investigated patients suffering from bipolar disorder (BD) (n=336) or personality disorders (PDs) (n=622). Twelve single-nucleotide polymorphisms (SNPs) covering the structural gene and the transcriptional control region of DIRAS2 were analyzed. Four SNPs and two haplotype blocks showed evidence of association with ADHD, with nominal p-values ranging from p=0.006 to p=0.05. In the adult replication samples, we obtained a consistent effect of rs1412005 and of a risk haplotype containing the promoter region (p=0.026). Meta-analysis resulted in a significant common OR of 1.12 (p=0.04) for rs1412005 and confirmed association with the promoter risk haplotype (OR=1.45, p=0.0003). Subsequent analysis in nuclear families with childhood ADHD again showed an association of the promoter haplotype block (p=0.02). rs1412005 also increased risk toward BD (p=0.026) and cluster B PD (p=0.031). Additional SNPs showed association with personality scores (p=0.008-0.048). Converging lines of evidence implicate genetic variance in the promoter region of DIRAS2 in the etiology of ADHD and co-morbid impulsive disorders