93 research outputs found

    Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels

    Get PDF
    Simultaneous analysis of economic and environmental performance of horticultural crop production requires qualified assumptions on the effect of management options, and particularly of nitrogen (N) fertilisation, on the net returns of the farm. Dynamic soil-plant-environment simulation models for agro-ecosystems are frequently applied to predict crop yield, generally as dry matter per area, and the environmental impact of production. Economic analysis requires conversion of yields to fresh marketable weight, which is not easy to calculate for vegetables, since different species have different properties and special market requirements. Furthermore, the marketable part of many vegetables is dependent on N availability during growth, which may lead to complete crop failure under sub-optimal N supply in tightly calculated N fertiliser regimes or low-input systems. In this paper we present two methods for converting simulated total dry matter to marketable fresh matter yield for various vegetables and European growth conditions, taking into consideration the effect of N supply: (i) a regression based function for vegetables sold as bulk or bunching ware and (ii) a population approach for piecewise sold row crops. For both methods, to be used in the context of a dynamic simulation model, parameter values were compiled from a literature survey. Implemented in such a model, both algorithms were tested against experimental field data, yielding an Index of Agreement of 0.80 for the regression strategy and 0.90 for the population strategy. Furthermore, the population strategy was capable of reflecting rather well the effect of crop spacing on yield and the effect of N supply on product grading

    Towards a collaborative research: A case study on linking science to farmers' perceptions and knowledge on Arabica coffee pests and diseases and its management

    Get PDF
    The scientific community has recognized the importance of integrating farmer's perceptions and knowledge (FPK) for the development of sustainable pest and disease management strategies. However, the knowledge gap between indigenous and scientific knowledge still contributes to misidentification of plant health constraints and poor adoption of management solutions. This is particularly the case in the context of smallholder farming in developing countries. In this paper, we present a case study on coffee production in Uganda, a sector depending mostly on smallholder farming facing a simultaneous and increasing number of socio-ecological pressures. The objectives of this study were (i) to examine and relate FPK on Arabica Coffee Pests and Diseases (CPaD) to altitude and the vegetation structure of the production systems; (ii) to contrast results with perceptions from experts and (iii) to compare results with field observations, in order to identify constraints for improving the information flow between scientists and farmers. Data were acquired by means of interviews and workshops. One hundred and fifty farmer households managing coffee either at sun exposure, under shade trees or inter-cropped with bananas and spread across an altitudinal gradient were selected. Field sampling of the two most important CPaD was conducted on a subset of 34 plots. The study revealed the following findings: (i) Perceptions on CPaD with respect to their distribution across altitudes and perceived impact are partially concordant among farmers, experts and field observations (ii) There are discrepancies among farmers and experts regarding management practices and the development of CPaD issues of the previous years. (iii) Field observations comparing CPaD in different altitudes and production systems indicate ambiguity of the role of shade trees. According to the locality-specific variability in CPaD pressure as well as in FPK, the importance of developing spatially variable and relevant CPaD control practices is proposed. (Résumé d'auteur

    Application of medical and analytical methods in Lyme borreliosis monitoring

    Get PDF
    Lyme borreliosis (LB) is one of the most common tick-borne diseases in the northern hemisphere. It is a chronic inflammatory disease caused by the spirochaete Borrelia burgdorferi. In its early stages, pathological skin lesions, namely erythema chronicum migrans, appear. The lesions, usually localised at the site of the bite, may become visible from a few weeks up to 3 months after the infection. Predominant clinical symptoms of the disease also involve joint malfunctions and neurological or cardiac disorders. Lyme disease, in all its stages, may be successfully treated with antibiotics. The best results, however, are obtained in its early stages. In order to diagnose the disease, numerous medical or laboratory techniques have been developed. They are applied to confirm the presence of intact spirochaetes or spirochaete components such as DNA or proteins in tick vectors, reservoir hosts or patients. The methods used for the determination of LB biomarkers have also been reviewed. These biomarkers are formed during the lipid peroxidation process. The formation of peroxidation products generated by human organisms is directly associated with oxidative stress. Apart from aldehydes (malondialdehyde and 4-hydroxy-2-nonenal), many other unsaturated components such as isoprostenes and neuroprostane are obtained. The fast determination of these compounds in encephalic fluid, urine or plasma, especially in early stages of the disease, enables its treatment. Various analytical techniques which allow the determination of the aforementioned biomarkers have been reported. These include spectrophotometry as well as liquid and gas chromatography. The analytical procedure also requires the application of a derivatization step by the use of selected reagents

    Cj1411c Encodes for a Cytochrome P450 Involved in Campylobacter jejuni 81-176 Pathogenicity

    Get PDF
    Cytochrome P450s are b-heme-containing enzymes that are able to introduce oxygen atoms into a wide variety of organic substrates. They are extremely widespread in nature having diverse functions at both biochemical and physiological level. The genome of C. jejuni 81-176 encodes a single cytochrome P450 (Cj1411c) that has no close homologues. Cj1411c is unusual in its genomic location within a cluster involved in the biosynthesis of outer surface structures. Here we show that E. coli expressed and affinity-purified C. jejuni cytochrome P450 is lipophilic, containing one equivalent Cys-ligated heme. Immunoblotting confirmed the association of cytochrome P450 with membrane fractions. A Cj1411c deletion mutant had significantly reduced ability to infect human cells and was less able to survive following exposure to human serum when compared to the wild type strain. Phenotypically following staining with Alcian blue, we show that a Cj1411c deletion mutant produces significantly less capsular polysaccharide. This study describes the first known membrane-bound bacterial cytochrome P450 and its involvement in Campylobacter virulence
    • 

    corecore