28 research outputs found

    Mapping polyclonal antibody responses to bacterial infection using next generation phage display

    Get PDF
    Mapping polyclonal antibody responses to infectious diseases to identify individual epitopes has the potential to underpin the development of novel serological assays and vaccines. Here, phage-peptide library panning coupled with screening using next generation sequencing was used to map antibody responses to bacterial infections. In the first instance, pigs experimentally infected with Salmonella enterica serovar Typhimurium was investigated. IgG samples from twelve infected pigs were probed in parallel and phage binding compared to that with equivalent IgG from pre-infected animals. Seventy- seven peptide mimotopes were enriched specifically against sera from multiple infected animals. Twenty-seven of these peptides were tested in ELISA and twenty-two were highly discriminatory for sera taken from pigs post-infection (P < 0.05) indicating that these peptides are mimicking epitopes from the bacteria. In order to further test this methodology, it was applied to differentiate antibody responses in poultry to infections with distinct serovars of Salmonella enterica. Twenty-seven peptides were identified as being enriched specifically against IgY from multiple animals infected with S. Enteritidis compared to those infected with S. Hadar. Nine of fifteen peptides tested in ELISA were highly discriminatory for IgY following S. Enteritidis infection (p < 0.05) compared to infections with S. Hadar or S. Typhimurium

    RNA Interference in Schistosoma mansoni Schistosomula: Selectivity, Sensitivity and Operation for Larger-Scale Screening

    Get PDF
    RNA interference (RNAi) is a technique to selectively suppress mRNA of individual genes and, consequently, their cognate proteins. RNAi using double-stranded (ds) RNA has been used to interrogate the function of mainly single genes in the flatworm, Schistosoma mansoni, one of a number of schistosome species causing schistosomiasis. In consideration of large-scale screens to identify candidate drug targets, we examined the selectivity and sensitivity (the degree of suppression) of RNAi for 11 genes produced in different tissues of the parasite: the gut, tegument (surface) and otherwise. We used the schistosomulum stage prepared from infective cercariae larvae which are accessible in large numbers and adaptable to automated screening platforms. We found that RNAi suppresses transcripts selectively, however, the sensitivity of suppression varies (40%–>75%). No obvious changes in the parasite occurred post-RNAi, including after targeting the mRNA of genes that had been computationally predicted to be essential for survival. Additionally, we defined operational parameters to facilitate large-scale RNAi, including choice of culture medium, transfection strategy to deliver dsRNA, dose- and time-dependency, and dosing limits. Finally, using fluorescent probes, we show that the developing gut allows rapid entrance of dsRNA into the parasite to initiate RNAi

    Metal-Free ALS Variants of Dimeric Human Cu,Zn-Superoxide Dismutase Have Enhanced Populations of Monomeric Species

    Get PDF
    Amino acid replacements at dozens of positions in the dimeric protein human, Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS). Although it has long been hypothesized that these mutations might enhance the populations of marginally-stable aggregation-prone species responsible for cellular toxicity, there has been little quantitative evidence to support this notion. Perturbations of the folding free energy landscapes of metal-free versions of five ALS-inducing variants, A4V, L38V, G93A, L106V and S134N SOD1, were determined with a global analysis of kinetic and thermodynamic folding data for dimeric and stable monomeric versions of these variants. Utilizing this global analysis approach, the perturbations on the global stability in response to mutation can be partitioned between the monomer folding and association steps, and the effects of mutation on the populations of the folded and unfolded monomeric states can be determined. The 2- to 10-fold increase in the population of the folded monomeric state for A4V, L38V and L106V and the 80- to 480-fold increase in the population of the unfolded monomeric states for all but S134N would dramatically increase their propensity for aggregation through high-order nucleation reactions. The wild-type-like populations of these states for the metal-binding region S134N variant suggest that even wild-type SOD1 may also be prone to aggregation in the absence of metals

    A research agenda for malaria eradication: basic science and enabling technologies.

    Get PDF
    Today's malaria control efforts are limited by our incomplete understanding of the biology of Plasmodium and of the complex relationships between human populations and the multiple species of mosquito and parasite. Research priorities include the development of in vitro culture systems for the complete life cycle of P. falciparum and P. vivax and the development of an appropriate liver culture system to study hepatic stages. In addition, genetic technologies for the manipulation of Plasmodium need to be improved, the entire parasite metabolome needs to be characterized to identify new druggable targets, and improved information systems for monitoring the changes in epidemiology, pathology, and host-parasite-vector interactions as a result of intensified control need to be established to bridge the gap between bench, preclinical, clinical, and population-based sciences
    corecore