67 research outputs found

    Neisseria meningitidis Differentially Controls Host Cell Motility through PilC1 and PilC2 Components of Type IV Pili

    Get PDF
    Neisseria meningitidis is a strictly human pathogen that has two facets since asymptomatic carriage can unpredictably turn into fulminant forms of infection. Meningococcal pathogenesis relies on the ability of the bacteria to break host epithelial or endothelial cellular barriers. Highly restrictive, yet poorly understood, mechanisms allow meningococcal adhesion to cells of only human origin. Adhesion of encapsulated and virulent meningococci to human cells relies on the expression of bacterial type four pili (T4P) that trigger intense host cell signalling. Among the components of the meningococcal T4P, the concomitantly expressed PilC1 and PilC2 proteins regulate pili exposure at the bacterial surface, and until now, PilC1 was believed to be specifically responsible for T4P-mediated meningococcal adhesion to human cells. Contrary to previous reports, we show that, like PilC1, the meningococcal PilC2 component is capable of mediating adhesion to human ME180 epithelial cells, with cortical plaque formation and F-actin condensation. However, PilC1 and PilC2 promote different effects on infected cells. Cellular tracking analysis revealed that PilC1-expressing meningococci caused a severe reduction in the motility of infected cells, which was not the case when cells were infected with PilC2-expressing strains. The amount of both total and phosphorylated forms of EGFR was dramatically reduced in cells upon PilC1-mediated infection. In contrast, PilC2-mediated infection did not notably affect the EGFR pathway, and these specificities were shared among unrelated meningococcal strains. These results suggest that meningococci have evolved a highly discriminative tool for differential adhesion in specific microenvironments where different cell types are present. Moreover, the fine-tuning of cellular control through the combined action of two concomitantly expressed, but distinctly regulated, T4P-associated variants of the same molecule (i.e. PilC1 and PilC2) brings a new model to light for the analysis of the interplay between pathogenic bacteria and human host cells

    Effects of kefir on coccidial oocysts excretion and performance of dairy goat kids following weaning

    Get PDF
    The aim of this study was to investigate effects of kefir, a traditional source of probiotic, on coccidial oocysts excretion and on the performance of dairy goat kids following weaning. Twin kids were randomly allocated to one of two groups at weaning. Kids of the first group received 20 ml of kefir daily for 6 weeks (KEF), while kids in the control group were given a placebo (CON). Individual faecal samples were regularly (n = 18 per kid) taken to quantify the number of coccidial oocysts per gram of faeces (OpG). There were no differences between the groups in terms of body weight development (P > 0.05) and feed consumption. Kids of both groups were not able to consume enough feed to meet their nutrient requirements during the first 3 weeks following weaning. KEF had a lower frequency of OpG positive samples than CON (P = 0.043). Kefir did not affect the maximum oocyst excretion and age of the kids at the highest oocyst excretion (P > 0.05). KEF shed numerically 35% lower coccidial oocysts than the controls, which corresponded to a statistical tendency (P = 0.074) in lowering Log-OpG in comparison to CON. While KEF had a lower frequency of OpG positive samples and tended to shed lower OPG by around one-third, the frequency of diarrhea, level of highest oocyst excretion, and performance of the kids remained unaffected. Therefore, it is concluded that overall effects of kefir do not have a significant impact on sub-clinical infection and performance in weaned kids under relatively high-hygienic farming conditions

    Deciduous Trees and the Application of Universal DNA Barcodes: A Case Study on the Circumpolar Fraxinus

    Get PDF
    The utility of DNA barcoding for identifying representative specimens of the circumpolar tree genus Fraxinus (56 species) was investigated. We examined the genetic variability of several loci suggested in chloroplast DNA barcode protocols such as matK, rpoB, rpoC1 and trnH-psbA in a large worldwide sample of Fraxinus species. The chloroplast intergenic spacer rpl32-trnL was further assessed in search for a potentially variable and useful locus. The results of the study suggest that the proposed cpDNA loci, alone or in combination, cannot fully discriminate among species because of the generally low rates of substitution in the chloroplast genome of Fraxinus. The intergenic spacer trnH-psbA was the best performing locus, but genetic distance-based discrimination was moderately successful and only resulted in the separation of the samples at the subgenus level. Use of the BLAST approach was better than the neighbor-joining tree reconstruction method with pairwise Kimura's two-parameter rates of substitution, but allowed for the correct identification of only less than half of the species sampled. Such rates are substantially lower than the success rate required for a standardised barcoding approach. Consequently, the current cpDNA barcodes are inadequate to fully discriminate Fraxinus species. Given that a low rate of substitution is common among the plastid genomes of trees, the use of the plant cpDNA “universal” barcode may not be suitable for the safe identification of tree species below a generic or sectional level. Supplementary barcoding loci of the nuclear genome and alternative solutions are proposed and discussed

    Beyond digitalization : “my boss is artificial”

    No full text
    Imagine that one day we have reached technological singularity—the point when technological development has outpaced human development. The question of whether machine intelligence is on a par with human intelligence has long been answered. Does this constellation place human fate at the mercy of machines, or is there still room to maneuver? This chapter aims to propose a research design to facilitate an interdisciplinary discourse on our digital futures. The research proposal aims to trigger and explore an interdisciplinary discourse on the designability of our digital future based on immersive scenarios. The main contribution of the immersive scenarios shall be that all experts are able to live through and comment on the same experiences. The domain of leadership in an organizational setting serves as an example that shall enable us to frame and discuss “possible futures” in a particular sphere of life
    corecore