16 research outputs found

    Bacteria-mediated aggregation of the marine phytoplankton Thalassiosira weissflogii and Nannochloropsis oceanica

    Full text link
    © 2020, The Author(s). The ecological relationships between heterotrophic bacteria and marine phytoplankton are complex and multifaceted, and in some instances include the bacteria-mediated aggregation of phytoplankton cells. It is not known to what extent bacteria stimulate aggregation of marine phytoplankton, the variability in aggregation capacity across different bacterial taxa or the potential role of algogenic exopolymers in this process. Here we screened twenty bacterial isolates, spanning nine orders, for their capacity to stimulate aggregation of two marine phytoplankters, Thalassiosira weissflogii and Nannochloropsis oceanica. In addition to phytoplankton aggregation efficiency, the production of exopolymers was measured using Alcian Blue. Bacterial isolates from the Rhodobacterales, Flavobacteriales and Sphingomonadales orders stimulated the highest levels of cell aggregation in phytoplankton cultures. When co-cultured with bacteria, exopolymer concentration accounted for 34.1% of the aggregation observed in T. weissflogii and 27.7% of the aggregation observed in N. oceanica. Bacteria-mediated aggregation of phytoplankton has potentially important implications for mediating vertical carbon flux in the ocean and in extracting phytoplankton cells from suspension for biotechnological applications

    Changes to the Fossil Record of Insects through Fifteen Years of Discovery

    Get PDF
    The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well

    Locally optimized coordinates in modified shepard interpolation

    Full text link
    An extension of the modified Shepard interpolation method is presented that allows expansions for the potential energy using different local coordinate sets to be used in a global interpolation. The coordinates used in a given Taylor expansion are determined using a training set of geometries at which the ab initio potential energy is known and that is built up during the construction of the interpolated potential energy surface. The method is applied to the bound state potential energy surface of methanol and a significant improvement in the rate of convergence of the interpolated potential energy surface to the ab initio potential energy is observed. © 2009 American Chemical Society

    Calculating vibrational spectra using modified Shepard interpolated potential energy surfaces

    Full text link
    A potential energy interpolation approach based on modified Shepard interpolation and specifically designed for calculation of vibrational states is presented. The importance of the choice of coordinates for the rate of convergence is demonstrated. Studying the vibrational states of the water molecule as a test case, a coordinate system comprised of inverse bond distances and trigonometric functions of the bond angle is found to be particularly efficient. Different sampling schemes used to locate the reference points in the modified Shepard interpolation are investigated. A final scheme is recommended, which allows the construction of potential energy surfaces to sub-wave-number accuracy. © 2008 American Institute of Physics

    An empirical process model to predict microalgal carbon fixation rates in photobioreactors

    Full text link
    © 2018 Elsevier B.V. An empirical process model was developed to infer the instantaneous net photosynthesis and carbon fixation rates from continuous pH and dissolved oxygen measurements during microalgal cultivation in photobioreactors. The model is based on the physical and chemical processes that govern the relationship between inorganic carbon supplied to a microalgal culture and the organic carbon fixed into microalgal biomass, with a particular focus on carbonate chemistry and mass transfer. Bayesian statistics were used to estimate the uncertainty in state variables, such as pH, net photosynthesis rate, and bicarbonate ion concentration, based on the constraints imposed by prior knowledge about these variables. The model was verified by batch-culturing the chlorophyte microalga Chlorella vulgaris in a photobioreactor under both bicarbonate-replete and bicarbonate-limiting conditions in order to test its predictive ability under different operational settings. The replicate photobioreactors were set up to simulate a scaled-down vertical cross-section of a typical raceway pond. This model could be used to test the activity and efficiency of carbon concentrating mechanisms in different microalgal species. It also provides a detailed understanding of how the rate of photosynthesis depends on dissolved inorganic carbon concentration, which could lead to better management of carbon supply in large-scale microalgal cultivation facilities

    Photosynthetic carbon uptake induces autoflocculation of the marine microalga Nannochloropsis oculata

    Full text link
    © 2017 Elsevier B.V. Microalgal biomass has been used to produce biofuels, aquaculture feed, high-value chemicals such as pigments and antioxidants, and even human food. This study addresses one of the key bottlenecks to the commercialisation of microalgal bioproducts: the high energy and environmental cost of harvesting microalgal cells out of suspension. An innovative and sustainable autoflocculation procedure was developed to pre-concentrate microalgal biomass for easier harvesting. Microalgal cell agglomeration by autoflocculation at high pH was induced for the first time, without the addition of a chemical flocculant, in the commercially-relevant microalga Nannochloropsis oculata. Photosynthetic inorganic carbon uptake, in the absence of carbon dioxide supply by mass transfer, was used to raise the culture pH. Autoflocculation started at pH 9.5 and reached a maximum flocculation efficiency of 90% at pH 10.4. Microalgal surface charge-neutralisation by calcium cations, and sweep flocculation by calcium carbonate and calcium phosphate precipitates were identified as the dominant flocculation mechanisms. This was also the first study to measure changes in bacterial community composition under autoflocculation. There was a clear shift from free-living bacteria in suspension to attached bacteria during autoflocculation, with Flavobacteriales becoming the dominant order of bacteria. This highlights the influential role of attached bacteria and bacteria-produced extracellular polymeric substances in microalgal flocculation. This study shows that regulating carbon dioxide supply is a promising green alternative to traditional microalgal flocculation processes as it alleviates the requirement for costly and harmful chemical flocculants and brings us closer to sustainable microalgal bioproducts

    Effect of the air-water interface on the structure of lysozyme in the presence of guanidinium chloride

    Full text link
    We report observations of the changes in the surface structure of lysozyme adsorbed at the air-water interface produced by the chemical denaturant guanidinium chloride. A primary result is the durability of the adsorbed surface layer to denaturation, as compared to the molecule in the bulk solution. Data on the surface film were obtained from X-ray and neutron reflectivity measurements and modeled simultaneously. The behavior of lysozyme in G.HC1 solutions was determined by small-angle X-ray scattering. For the air-water interface, determination of the adsorbed protein layer dimensions shows that at low to moderate denaturant concentrations (up to 2 mol L-1). there is no significant distortion of the protein's tertiary structure at the interface, as changes in the orientation of the protein are sufficient to model data. At higher denaturant concentrations, time-dependent multilayer formation occurred, indicating molecular aggregation at the surface. Methodologies to predict the protein orientation at the interface, based on amino acid residues' surface affinities and charge, were critiqued and validated against our experimental data. © 2008 American Chemical Society

    Proteomic and biophysical analyses reveal a metabolic shift in nitrogen deprived Nannochloropsis oculata

    Full text link
    © 2016. The microalga Nannochloropsis oculata is a model organism for understanding intracellular lipid production, with potential benefits to the biofuel, aquaculture and nutraceutical industries. It is well known that nitrogen deprivation increases lipid accumulation in microalgae but the underlying processes are not fully understood. In this study, detailed proteomic and biophysical analyses were used to describe mechanisms that regulate carbon partitioning in nitrogen-deplete N. oculata. The alga selectively up- or down-regulated proteins to shift its metabolic flux in order to compensate for deficits in nitrate availability. Under nitrogen deprivation, proteins involved in photosynthesis, carbon fixation and chlorophyll biosynthesis were all down-regulated, and this was reflected in reduced cell growth and chlorophyll content. Protein content was reduced 4.9-fold in nitrogen-deplete conditions while fatty acid methyl esters increased by 60%. Proteomic analysis revealed that organic carbon and nitrogen from the breakdown of proteins and pigments is channeled primarily into fatty acid synthesis. As a result, the fatty acid concentration increased and the fatty acid profile became more favorable for algal biodiesel production. This advancement in microalgal proteomic analysis will help inform lipid accumulation strategies and optimum cultivation conditions for overproduction of fatty acids in N. oculata

    Trapping a diradical transition state by mechanochemical polymer extension

    Full text link
    Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the polymer backbone. We report that mechanochemical activation of the polymer under tension opens the gDFCs and traps a 1,3-diradical that is formally a transition state in their stress-free electrocyclic isomerization. The trapped diradical lives long enough that we can observe its noncanonical participation in bimolecular addition reactions. Furthermore, the application of a transient tensile force induces a net isomerization of the trans-gDFC into its less-stable cis isomer, leading to the counterintuitive result that the gDFC contracts in response to a transient force of extension
    corecore