1,814 research outputs found

    Quantum Holographic Encoding in a Two-dimensional Electron Gas

    Full text link
    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures--"molecular holograms"--which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as ~0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm2 and place tens of bits into a single fermionic state.Comment: Published online 25 January 2009 in Nature Nanotechnology; 12 page manuscript (including 4 figures) + 2 page supplement (including 1 figure); supplementary movie available at http://mota.stanford.ed

    Transcatheter Aortic Valve Implantation in Dialysis Patients

    Get PDF
    Background/Aims: Transcatheter aortic valve implantation (TAVI) has emerged as a new therapeutic option for high-risk patients. However, dialysis patients were excluded from all previous studies. The aim of this study is to compare the outcomes of TAVI for dialysis patients with those for patients with chronic kidney disease (CKD) stages 3 and 4 and to compare TAVI with open surgery in dialysis patients. Methods: Part I: comparison of 10 patients on chronic hemodialysis with 116 patients with non-dialysis-dependent CKD undergoing TAVI. Part II: comparison of transcatheter (n = 15) with open surgical (n = 24) aortic valve replacement in dialysis patients. Results: Part I: dialysis patients were significantly younger (72.3 vs. 82.0 years; p < 0.01). Hospital stay was significantly longer in dialysis patients (21.8 vs. 12.1 days; p = 0.01). Overall 30-day mortality was 3.17%, with no deaths among dialysis patients. Six-month survival rates were similar (log-rank p = 0.935). Part II: patient age was comparable (66.5 vs. 69.5 years; p = 0.42). Patients in the surgical group tended to stay longer in hospital than TAVI patients (29.5 vs. 22.5 days; p = 0.35). Conclusion: TAVI is a safe procedure in patients on chronic hemodialysis. Until new data become available, we find no compelling reason to refuse these patients TAVI. Copyright (C) 2012 S. Karger AG, Base

    The Sec1/Munc18 protein Vps45 regulates cellular levels of its SNARE binding partners Tlg2 and Snc2 in Saccharomyces cerevisiae

    Get PDF
    Intracellular membrane trafficking pathways must be tightly regulated to ensure proper functioning of all eukaryotic cells. Central to membrane trafficking is the formation of specific SNARE (soluble N-ethylmeleimide-sensitive factor attachment protein receptor) complexes between proteins on opposing lipid bilayers. The Sec1/Munc18 (SM) family of proteins play an essential role in SNARE-mediated membrane fusion, and like the SNAREs are conserved through evolution from yeast to humans. The SM protein Vps45 is required for the formation of yeast endosomal SNARE complexes and is thus essential for traffic through the endosomal system. Here we report that, in addition to its role in regulating SNARE complex assembly, Vps45 regulates cellular levels of its SNARE binding partners: the syntaxin Tlg2 and the v-SNARE Snc2: Cells lacking Vps45 have reduced cellular levels of Tlg2 and Snc2; and elevation of Vps45 levels results in concomitant increases in the levels of both Tlg2 and Snc2. As well as regulating traffic through the endosomal system, the Snc v-SNAREs are also required for exocytosis. Unlike most vps mutants, cells lacking Vps45 display multiple growth phenotypes. Here we report that these can be reversed by selectively restoring Snc2 levels in vps45 mutant cells. Our data indicate that as well as functioning as part of the machinery that controls SNARE complex assembly, Vps45 also plays a key role in determining the levels of its cognate SNARE proteins; another key factor in regulation of membrane traffic

    Investigations on antibody binding to a micro-cantilever coated with a BAM pesticide residue

    Get PDF
    The attachment of an antibody to an antigen-coated cantilever has been investigated by repeated experiments, using a cantilever-based detection system by Cantion A/S. The stress induced by the binding of a pesticide residue BAM (2,6 dichlorobenzamide) immobilized on a cantilever surface to anti-BAM antibody is measured using the CantiLab4© system from Cantion A/S with four gold-coated cantilevers and piezo resistive readout. The detection mechanism is in principle label-free, but fluorescent-marked antibodies have been used to subsequently verify the binding on the cantilever surface. The bending and increase in mass of each cantilever has also been investigated using a light interferometer and a Doppler Vibrometer. The system has been analyzed during repeated measurements to investigate whether the CantiLab4© system is a suited platform for a pesticide assay system

    Prenatal Bisphenol A Exposure and Early Childhood Behavior

    Get PDF
    BackgroundPrenatal exposure to bisphenol A (BPA) increases offspring aggression and diminishes differences in sexually dimorphic behaviors in rodents.ObjectiveWe examined the association between prenatal BPA exposure and behavior in 2-year-old children.MethodsWe used data from 249 mothers and their children in Cincinnati, Ohio (USA). Maternal urine was collected around 16 and 26 weeks of gestation and at birth. BPA concentrations were quantified using high-performance liquid chromatography–isotope-dilution tandem mass spectrometry. Child behavior was assessed at 2 years of age using the second edition of the Behavioral Assessment System for Children (BASC-2). The association between prenatal BPA concentrations and BASC-2 scores was analyzed using linear regression.ResultsMedian BPA concentrations were 1.8 (16 weeks), 1.7 (26 weeks), and 1.3 (birth) ng/mL. Mean (± SD) BASC-2 externalizing and internalizing scores were 47.6 ± 7.8 and 44.8 ± 7.0, respectively. After adjustment for confounders, log10-transformed mean prenatal BPA concentrations were associated with externalizing scores, but only among females [β = 6.0; 95% confidence interval (CI), 0.1–12.0]. Compared with 26-week and birth concentrations, BPA concentrations collected around 16 weeks were more strongly associated with externalizing scores among all children (β = 2.9; 95% CI, 0.2–5.7), and this association was stronger in females than in males. Among all children, measurements collected at ≤ 16 weeks showed a stronger association (β = 5.1; 95% CI, 1.5–8.6) with externalizing scores than did measurements taken at 17–21 weeks (β = 0.6; 95% CI, −2.9 to 4.1).ConclusionsThese results suggest that prenatal BPA exposure may be associated with externalizing behaviors in 2-year-old children, especially among female children

    Neural field models with threshold noise

    Get PDF
    The original neural field model of Wilson and Cowan is often interpreted as the averaged behaviour of a network of switch like neural elements with a distribution of switch thresholds, giving rise to the classic sigmoidal population firing-rate function so prevalent in large scale neuronal modelling. In this paper we explore the effects of such threshold noise without recourse to averaging and show that spatial correlations can have a strong effect on the behaviour of waves and patterns in continuum models. Moreover, for a prescribed spatial covariance function we explore the differences in behaviour that can emerge when the underlying stationary distribution is changed from Gaussian to non-Gaussian. For travelling front solutions, in a system with exponentially decaying spatial interactions, we make use of an interface approach to calculate the instantaneous wave speed analytically as a series expansion in the noise strength. From this we find that, for weak noise, the spatially averaged speed depends only on the choice of covariance function and not on the shape of the stationary distribution. For a system with a Mexican-hat spatial connectivity we further find that noise can induce localised bump solutions, and using an interface stability argument show that there can be multiple stable solution branches

    Young people’s perceptions of smartphone-enabled self-testing and online care for sexually transmitted infections: qualitative interview study

    Get PDF
    Background Control of sexually transmitted infections (STI) is a global public health priority. Despite the UK’s free, confidential sexual health clinical services, those at greatest risk of STIs, including young people, report barriers to use. These include: embarrassment regarding face-to-face consultations; the time-commitment needed to attend clinic; privacy concerns (e.g. being seen attending clinic); and issues related to confidentiality. A smartphone-enabled STI self-testing device, linked with online clinical care pathways for treatment, partner notification, and disease surveillance, is being developed by the eSTI2 consortium. It is intended to benefit public health, and could do so by increasing testing among populations which underutilise existing services and/or by enabling rapid provision of effective treatment. We explored its acceptability among potential users. Methods In-depth interviews were conducted in 2012 with 25 sexually-experienced 16–24 year olds, recruited from Further Education colleges in an urban, high STI prevalence area. Thematic analysis was undertaken. Results Nine females and 16 males participated. 21 self-defined as Black; three, mixed ethnicity; and one, Muslim/Asian. 22 reported experience of STI testing, two reported previous STI diagnoses, and all had owned smartphones. Participants expressed enthusiasm about the proposed service, and suggested that they and their peers would use it and test more often if it were available. Utilizing sexual healthcare was perceived to be easier and faster with STI self-testing and online clinical care, which facilitated concealment of STI testing from peers/family, and avoided embarrassing face-to-face consultations. Despite these perceived advantages to privacy, new privacy concerns arose regarding communications technology: principally the risk inherent in having evidence of STI testing or diagnosis visible or retrievable on their phone. Some concerns arose regarding the proposed self-test’s accuracy, related to self-operation and the technology’s novelty. Several expressed anxiety around the possibility of being diagnosed and treated without any contact with healthcare professionals. Conclusions Remote STI self-testing and online care appealed to these young people. It addressed barriers they associated with conventional STI services, thus may benefit public health through earlier detection and treatment. Our findings underpin development of online care pathways, as part of ongoing research to create this complex e-health intervention

    Motivations, experiences and aspirations of trainee nursing associates in England: a qualitative study

    Get PDF
    Background The nursing associate role was developed in England in response to the ‘Shape of Caring’ review. It has been implemented to fulfil two aims; to bridge the gap between registered nurses and healthcare assistants, and to provide an alternative route into registered nursing in light of workforce shortages. Other high income countries deploy second level nurses within their healthcare systems, however the UK has a turbulent history with such roles. The previous state enrolled nurse was phased out in the 1990s, and more recently the assistant practitioner (AP) role has faced wide variation in titles, scope and pay. Little is known about those who have embarked on the new nursing associate training course and their experiences of the role. Methods An exploratory qualitative study was undertaken using focus groups of trainee nursing associates to generate in-depth discussion about their motivations, experiences of training, and career aspirations. Three focus groups (n = 15) took place in December 2018 using a purposive sample of trainee nursing associates registered at a University in the North of England. Two researchers facilitated each group discussion at a time and place convenient for participants. The discussions were audio recorded, transcribed and data was analysed thematically. Results This study found that trainee nursing associates are motivated by affordable, local, career development. During training they face challenges relating to clinical support, academic workload and uncertainty about future career opportunities. They experience role ambiguity both individually and across the wider organisation. Trainee nursing associates rely on broad support networks to build their occupational identity. Conclusions The barriers and facilitators of trainee nursing associate personal development have implications for policy and practice relating to recruitment and retention. The results increase our understanding of this emerging role, and have informed the development of a larger longitudinal cohort study. Further research is required to evaluate the impact of this new role

    Cloning and characterization of the ecto-nucleotidase NTPDase3 from rat brain: Predicted secondary structure and relation to other members of the E-NTPDase family and actin

    Get PDF
    The protein family of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDase family) contains multiple members that hydrolyze nucleoside 5’-triphosphates and nucleoside 5’-diphosphates with varying preference for the individual type of nucleotide. We report the cloning and functional expression of rat NTPDase3. The rat brain-derived cDNA has an open reading frame of 1590 bp encoding 529 amino acid residues, a calculated molecular mass of 59.1 kDa and predicted N- and C-terminal hydrophobic sequences. It shares 94.3% and 81.7% amino acid identity with the mouse and human NTPDase3, respectively, and is more closely related to cell surface-located than to the intracellularly located members of the enzyme family. The NTPDase3 gene is allocated to chromosome 8q32 and organized into 11 exons. Rat NTPDase3 expressed in CHO cells hydrolyzed both nucleoside triphosphates and nucleoside diphosphates with hydrolysis ratios of ATP:ADP of 5:1 and UTP:UDP of 8:1. After addition of ATP, ADP is formed as an intermediate product that is further hydrolyzed to AMP. The enzyme is preferentially activated by Ca2+ over Mg2+ and reveals an alkaline pH optimum. Immunocytochemistry confirmed expression of heterologously expressed NTPDase3 to the surface of CHO cells. PC12 cells express endogenous surface-located NTPDase3. An immunoblot analysis detects NTPDase3 in all rat brain regions investigated. An alignment of the secondary structure domains of actin conserved within the actin/HSP70/sugar kinase superfamily to those of all members of the NTPDase family reveals apparent similarity. It infers that NTPDases share the two-domain structure with members of this enzyme superfamily

    ARPES: A probe of electronic correlations

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancini, Springer Series in Solid-State Sciences (2013). A high-resolution version can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf. arXiv admin note: text overlap with arXiv:cond-mat/0307085, arXiv:cond-mat/020850
    corecore