74 research outputs found

    Detailed analysis of X chromosome inactivation in a 49,XXXXX pentasomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pentasomy X (49,XXXXX) has been associated with a severe clinical condition, presumably resulting from failure or disruption of X chromosome inactivation. Here we report that some human X chromosomes from a patient with 49,XXXXX pentasomy were functionally active following isolation in inter-specific (human-rodent) cell hybrids. A comparison with cytogenetic and molecular findings provided evidence that more than one active X chromosome was likely to be present in the cells of this patient, accounting for her abnormal phenotype.</p> <p>Results</p> <p>5-bromodeoxyuridine (BrdU)-pulsed cultures showed different patterns among late replicating X chromosomes suggesting that their replication was asynchronic and likely to result in irregular inactivation. Genotyping of the proband and her mother identified four maternal and one paternal X chromosomes in the proband. It also identified the paternal X chromosome haplotype (P), indicating that origin of this X pentasomy resulted from two maternal, meiotic non-disjunctions. Analysis of the <it>HUMANDREC </it>region of the androgen receptor (<it>AR</it>) gene in the patient's mother showed a skewed inactivation pattern, while a similar analysis in the proband showed an active paternal X chromosome and preferentially inactivated X chromosomes carrying the 173 <it>AR </it>allele. Analyses of 33 cell hybrid cell lines selected in medium containing hypoxanthine, aminopterin and thymidine (HAT) allowed for the identification of three maternal X haplotypes (M1, M2 and MR) and showed that X chromosomes with the M1, M2 and P haplotypes were functionally active. In 27 cell hybrids in which more than one X haplotype were detected, analysis of X inactivation patterns provided evidence of preferential inactivation.</p> <p>Conclusion</p> <p>Our findings indicated that 12% of X chromosomes with the M1 haplotype, 43.5% of X chromosomes with the M2 haplotype, and 100% of the paternal X chromosome (with the P haplotype) were likely to be functionally active in the proband's cells, a finding indicating that disruption of X inactivation was associated to her severe phenotype.</p

    Adenosine A1 receptor: Functional receptor-receptor interactions in the brain

    Get PDF
    Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Role of the ecto-nucleotidases in the cooperative effect of adenosine and neuropeptide-S on locomotor activity in mice.

    No full text
    Activation of adenosine receptors modifies the action of classic neurotransmitters (i.e. dopamine, glutamate and acetylcholine) and other neuromodulators, like vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neuropeptide S (NPS). Similarly to adenosine, NPS is involved in the regulation of stimulus and response to fear and arousal. Thus, the present study investigates the effects of NPS on locomotor activity in mice treated with or without α,ÎČ-methylene adenosine 5'-diphosphate (AOPCP), the inhibitor of ecto-5'-nucleotidase. Additionally, we evaluate the activity of ecto-5'-nucleotidase in brain slices of mice treated with or without NPS. Male adult CF-1 mice received i.c.v. NPS as 0.1 nmol injection with or without pre-treatment with 1 nmol α,ÎČ-methylene adenosine 5'-diphosphate (AOPCP), the selective inhibitor of ecto-5'-nucleotidase, to evaluate locomotor activity. In another set of experiments, mice received i.c.v. infusion of 0.1 nmol NPS to assay enzymatic activity in brain slices. The results demonstrated that the pre-treatment with AOPCP, which was inactive per se, prevented NPS-induced hyperlocomotion in mice. The dose of 0.1 nmol NPS was efficient to induce hyperlocomotion in animals during the observation period in the activity cage. Regarding enzymatic activity, i.c.v. NPS injection did not induce any significant alterations in ATP and AMP hydrolysis in striatum and hippocampus brain slices of mice. The present study shows that the hyperlocomotor effect of NPS depends on the ecto-5'-nucleotidase activity

    Role of the ecto-nucleotidases in the cooperative effect of adenosine and neuropeptide-S on locomotor activity in mice

    No full text
    Activation of adenosine receptors modifies the action of classic neurotransmitters (i.e. dopamine, glutamate and acetylcholine) and other neuromodulators, like vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neuropeptide S (NPS). Similarly to adenosine, NPS is involved in the regulation of stimulus and response to fear and arousal. Thus, the present study investigates the effects of NPS on locomotor activity in mice treated with or without \u3b1,\u3b2-methylene adenosine 5'-diphosphate (AOPCP), the inhibitor of ecto-5'-nucleotidase. Additionally, we evaluate the activity of ecto-5'-nucleotidase in brain slices of mice treated with or without NPS. Male adult CF-1 mice received i.c.v. NPS as 0.1 nmol injection with or without pre-treatment with 1 nmol \u3b1,\u3b2-methylene adenosine 5'-diphosphate (AOPCP), the selective inhibitor of ecto-5'-nucleotidase, to evaluate locomotor activity. In another set of experiments, mice received i.c.v. infusion of 0.1 nmol NPS to assay enzymatic activity in brain slices. The results demonstrated that the pre-treatment with AOPCP, which was inactive per se, prevented NPS-induced hyperlocomotion in mice. The dose of 0.1 nmol NPS was efficient to induce hyperlocomotion in animals during the observation period in the activity cage. Regarding enzymatic activity, i.c.v. NPS injection did not induce any significant alterations in ATP and AMP hydrolysis in striatum and hippocampus brain slices of mice. The present study shows that the hyperlocomotor effect of NPS depends on the ecto-5'-nucleotidase activity
    • 

    corecore