554 research outputs found

    A New Calibrated Bayesian Internal Goodness-of-Fit Method: Sampled Posterior p-Values as Simple and General p-Values That Allow Double Use of the Data

    Get PDF
    Background: Recent approaches mixing frequentist principles with Bayesian inference propose internal goodness-of-fit (GOF) p-values that might be valuable for critical analysis of Bayesian statistical models. However, GOF p-values developed to date only have known probability distributions under restrictive conditions. As a result, no known GOF p-value has a known probability distribution for any discrepancy function. Methodology/Principal Findings: We show mathematically that a new GOF p-value, called the sampled posterior p-value (SPP), asymptotically has a uniform probability distribution whatever the discrepancy function. In a moderate finite sample context, simulations also showed that the SPP appears stable to relatively uninformative misspecifications of the prior distribution. Conclusions/Significance: These reasons, together with its numerical simplicity, make the SPP a better canonical GOF p-value than existing GOF p-values

    Relationship between treatment delay and final infarct size in STEMI patients treated with abciximab and primary PCI

    Get PDF
    Background Studies on the impact of time to treatment on myocardial infarct size have yieldedΒ Β  conflicting results. In this study of ST-Elevation Myocardial Infarction (STEMI) treatedΒ Β  with primary percutaneous coronary intervention (PCI), we set out to investigate theΒ Β  relationship between the time from First Medical Contact (FMC) to the demonstrationΒ Β  of an open infarct related artery (IRA) and final scar size. Between February 2006 and September 2007, 89 STEMI patients treated with primary PCIΒ Β  were studied with contrast enhanced magnetic resonance imaging (ceMRI) 4 to 8 weeksΒ Β  after the infarction. Spearman correlation was computed for health care delay timeΒ Β  (defined as time from FMC to PCI) and myocardial injury. Multiple linear regressionΒ Β  was used to determine covariates independently associated with infarct size. Results An occluded artery (Thrombolysis In Myocardial Infarction, TIMI flow 0-1 at initialΒ Β  angiogram) was seen in 56 patients (63%). The median FMC-to-patent artery was 89 minutes.Β Β  There was a weak correlation between time from FMC-to-patent IRA and infarct size,Β Β  r = 0.27, p = 0.01. In multiple regression analyses, LAD as the IRA, smoking and an occluded vesselΒ Β  at the first angiogram, but not delay time, correlated with infarct size. Conclusions In patients with STEMI treated with primary PCI we found a weak correlation betweenΒ Β  health care delay time and infarct size. Other factors like anterior infarction, aΒ Β  patent artery pre-PCI and effects of reperfusion injury may have had greater influenceΒ Β  on infarct size than time-to-treatment per se

    Neural Correlates of the Difference between Working Memory Speed and Simple Sensorimotor Speed: An fMRI Study

    Get PDF
    The difference between the speed of simple cognitive processes and the speed of complex cognitive processes has various psychological correlates. However, the neural correlates of this difference have not yet been investigated. In this study, we focused on working memory (WM) for typical complex cognitive processes. Functional magnetic resonance imaging data were acquired during the performance of an N-back task, which is a measure of WM for typical complex cognitive processes. In our N-back task, task speed and memory load were varied to identify the neural correlates responsible for the difference between the speed of simple cognitive processes (estimated from the 0-back task) and the speed of WM. Our findings showed that this difference was characterized by the increased activation in the right dorsolateral prefrontal cortex (DLPFC) and the increased functional interaction between the right DLPFC and right superior parietal lobe. Furthermore, the local gray matter volume of the right DLPFC was correlated with participants' accuracy during fast WM tasks, which in turn correlated with a psychometric measure of participants' intelligence. Our findings indicate that the right DLPFC and its related network are responsible for the execution of the fast cognitive processes involved in WM. Identified neural bases may underlie the psychometric differences between the speed with which subjects perform simple cognitive tasks and the speed with which subjects perform more complex cognitive tasks, and explain the previous traditional psychological findings

    Cerebellum Abnormalities in Idiopathic Generalized Epilepsy with Generalized Tonic-Clonic Seizures Revealed by Diffusion Tensor Imaging

    Get PDF
    Although there is increasing evidence suggesting that there may be subtle abnormalities in idiopathic generalized epilepsy (IGE) patients using modern neuroimaging techniques, most of these previous studies focused on the brain grey matter, leaving the underlying white matter abnormalities in IGE largely unknown, which baffles the treatment as well as the understanding of IGE. In this work, we adopted multiple methods from different levels based on diffusion tensor imaging (DTI) to analyze the white matter abnormalities in 14 young male IGE patients with generalized tonic-clonic seizures (GTCS) only, comparing with 29 age-matched male healthy controls. First, we performed a voxel-based analysis (VBA) of the fractional anisotropy (FA) images derived from DTI. Second, we used a tract-based spatial statistics (TBSS) method to explore the alterations within the white matter skeleton of the patients. Third, we adopted region-of-interest (ROI) analyses based on the findings of VBA and TBSS to further confirm abnormal brain regions in the patients. At last, considering the convergent evidences we found by VBA, TBSS and ROI analyses, a subsequent probabilistic fiber tractography study was performed to investigate the abnormal white matter connectivity in the patients. Significantly decreased FA values were consistently observed in the cerebellum of patients, providing fresh evidence and new clues for the important role of cerebellum in IGE with GTCS

    The Power of Exercise: Buffering the Effect of Chronic Stress on Telomere Length

    Get PDF
    Background: Chronic psychological stress is associated with detrimental effects on physical health, and may operate in part through accelerated cell aging, as indexed by shorter telomeres at the ends of chromosomes. However, not all people under stress have distinctly short telomeres, and we examined whether exercise can serve a stress-buffering function. We predicted that chronic stress would be related to short telomere length (TL) in sedentary individuals, whereas in those who exercise, stress would not have measurable effects on telomere shortening. Methodology and Principal Findings: 63 healthy post-menopausal women underwent a fasting morning blood draw for whole blood TL analysis by a quantitative polymerase chain reaction method. Participants completed the Perceived Stress Scale (Cohen et al., 1983), and for three successive days reported daily minutes of vigorous activity. Participants were categorized into two groups-sedentary and active (those getting Centers for Disease Control-recommended daily amount of activity). The likelihood of having short versus long telomeres was calculated as a function of stress and exercise group, covarying age, BMI and education. Logistic regression analyses revealed a significant moderating effect of exercise. As predicted, among non-exercisers a one unit increase in the Perceived Stress Scale was related to a 15-fold increase in the odds of having short telomeres (p,.05), whereas in exercisers, perceived stress appears to be unrelated to TL (B = 2.59, SE =.78, p =.45)

    Prolonged Application of High Fluid Shear to Chondrocytes Recapitulates Gene Expression Profiles Associated with Osteoarthritis

    Get PDF
    BACKGROUND: Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA) disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes. METHODOLOGY/PRINCIPAL FINDINGS: Using a cDNA microarray technology, we screened the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm(2)) for 48 h and 72 h relative to static controls. Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be β‰₯2-fold up-regulated and ≀0.6-fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2) in the pathogenesis and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase (L-PGDS) induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families, which may play a critical role in chondrocyte death. CONCLUSIONS/SIGNIFICANCE: Prolonged application of high fluid shear stress to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to abnormal mechanical loading and the pathogenesis/progression of OA

    Genetic Effects at Pleiotropic Loci Are Context-Dependent with Consequences for the Maintenance of Genetic Variation in Populations

    Get PDF
    Context-dependent genetic effects, including genotype-by-environment and genotype-by-sex interactions, are a potential mechanism by which genetic variation of complex traits is maintained in populations. Pleiotropic genetic effects are also thought to play an important role in evolution, reflecting functional and developmental relationships among traits. We examine context-dependent genetic effects at pleiotropic loci associated with normal variation in multiple metabolic syndrome (MetS) components (obesity, dyslipidemia, and diabetes-related traits). MetS prevalence is increasing in Western societies and, while environmental in origin, presents substantial variation in individual response. We identify 23 pleiotropic MetS quantitative trait loci (QTL) in an F16 advanced intercross between the LG/J and SM/J inbred mouse strains (Wustl:LG,SM-G16; nβ€Š=β€Š1002). Half of each family was fed a high-fat diet and half fed a low-fat diet; and additive, dominance, and parent-of-origin imprinting genotypic effects were examined in animals partitioned into sex, diet, and sex-by-diet cohorts. We examine the context-dependency of the underlying additive, dominance, and imprinting genetic effects of the traits associated with these pleiotropic QTL. Further, we examine sequence polymorphisms (SNPs) between LG/J and SM/J as well as differential expression of positional candidate genes in these regions. We show that genetic associations are different in different sex, diet, and sex-by-diet settings. We also show that over- or underdominance and ecological cross-over interactions for single phenotypes may not be common, however multidimensional synthetic phenotypes at loci with pleiotropic effects can produce situations that favor the maintenance of genetic variation in populations. Our findings have important implications for evolution and the notion of personalized medicine
    • …
    corecore