133 research outputs found
Compositionality, stochasticity and cooperativity in dynamic models of gene regulation
We present an approach for constructing dynamic models for the simulation of
gene regulatory networks from simple computational elements. Each element is
called a ``gene gate'' and defines an input/output-relationship corresponding
to the binding and production of transcription factors. The proposed reaction
kinetics of the gene gates can be mapped onto stochastic processes and the
standard ode-description. While the ode-approach requires fixing the system's
topology before its correct implementation, expressing them in stochastic
pi-calculus leads to a fully compositional scheme: network elements become
autonomous and only the input/output relationships fix their wiring. The
modularity of our approach allows to pass easily from a basic first-level
description to refined models which capture more details of the biological
system. As an illustrative application we present the stochastic repressilator,
an artificial cellular clock, which oscillates readily without any cooperative
effects.Comment: 15 pages, 8 figures. Accepted by the HFSP journal (13/09/07
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants
BACKGROUND: One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes. METHODS: We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence—defined as fasting plasma glucose of 7·0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs—in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue. FINDINGS: We used data from 751 studies including 4 372 000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4·3% (95% credible interval 2·4–7·0) in 1980 to 9·0% (7·2–11·1) in 2014 in men, and from 5·0% (2·9–7·9) to 7·9% (6·4–9·7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28·5% due to the rise in prevalence, 39·7% due to population growth and ageing, and 31·8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target. INTERPRETATION: Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries. FUNDING: Wellcome Trust
Gene Expression Profiles Distinguish the Carcinogenic Effects of Aristolochic Acid in Target (Kidney) and Non-target (Liver) Tissues in Rats
BACKGROUND: Aristolochic acid (AA) is the active component of herbal drugs derived from Aristolochia species that have been used for medicinal purposes since antiquity. AA, however, induced nephropathy and urothelial cancer in people and malignant tumors in the kidney and urinary tract of rodents. Although AA is bioactivated in both kidney and liver, it only induces tumors in kidney. To evaluate whether microarray analysis can be used for distinguishing the tissue-specific carcinogenicity of AA, we examined gene expression profiles in kidney and liver of rats treated with carcinogenic doses of AA. RESULTS: Microarray analysis was performed using the Rat Genome Survey Microarray and data analysis was carried out within ArrayTrack software. Principal components analysis and hierarchical cluster analysis of the expression profiles showed that samples were grouped together according to the tissues and treatments. The gene expression profiles were significantly altered by AA treatment in both kidney and liver (p < 0.01; fold change > 1.5). Functional analysis with Ingenuity Pathways Analysis showed that there were many more significantly altered genes involved in cancer-related pathways in kidney than in liver. Also, analysis with Gene Ontology for Functional Analysis (GOFFA) software indicated that the biological processes related to defense response, apoptosis and immune response were significantly altered by AA exposure in kidney, but not in liver. CONCLUSION: Our results suggest that microarray analysis is a useful tool for detecting AA exposure; that analysis of the gene expression profiles can define the differential responses to toxicity and carcinogenicity of AA from kidney and liver; and that significant alteration of genes associated with defense response, apoptosis and immune response in kidney, but not in liver, may be responsible for the tissue-specific toxicity and carcinogenicity of AA
Boolean network simulations for life scientists
Modern life sciences research increasingly relies on computational solutions, from large scale data analyses to theoretical modeling. Within the theoretical models Boolean networks occupy an increasing role as they are eminently suited at mapping biological observations and hypotheses into a mathematical formalism. The conceptual underpinnings of Boolean modeling are very accessible even without a background in quantitative sciences, yet it allows life scientists to describe and explore a wide range of surprisingly complex phenomena. In this paper we provide a clear overview of the concepts used in Boolean simulations, present a software library that can perform these simulations based on simple text inputs and give three case studies. The large scale simulations in these case studies demonstrate the Boolean paradigms and their applicability as well as the advanced features and complex use cases that our software package allows. Our software is distributed via a liberal Open Source license and is freely accessible fro
The Pune Rural Intervention in Young Adolescents (PRIYA) study: design and methods of a randomised controlled trial
An IGF-I promoter polymorphism modifies the relationships between birth weight and risk factors for cardiovascular disease and diabetes at age 36
OBJECTIVE: To investigate whether IGF-I promoter polymorphism was associated with birth weight and risk factors for cardiovascular disease (CVD) and type 2 diabetes (T2DM), and whether the birth weight – risk factor relationship was the same for each genotype. DESIGN AND PARTICIPANTS: 264 subjects (mean age 36 years) had data available on birth weight, IGF-I promoter polymorphism genotype, CVD and T2DM risk factors. Student's t-test and regression analyses were applied to analyse differences in birth weight and differences in the birth weight – risk factors relationship between the genotypes. RESULTS: Male variant carriers (VCs) of the IGF-I promoter polymorphism had a 0.2 kg lower birth weight than men with the wild type allele (p = 0.009). Of the risk factors for CVD and T2DM, solely LDL concentration was associated with the genotype for the polymorphism. Most birth weight – risk factor relationships were stronger in the VC subjects; among others the birth weight – systolic blood pressure relationship: 1 kg lower birth weight was related to an 8.0 mmHg higher systolic blood pressure CONCLUSION: The polymorphism in the promoter region of the IGF-I gene is related to birth weight in men only, and to LDL concentration only. Furthermore, the genotype for this polymorphism modified the relationships between birth weight and the risk factors, especially for systolic and diastolic blood pressure
Do you get what you pay for? Sales incentives and implications for motivation and changes in turnover intention and work effort
This study investigated relations between pay-for-performance incentives designed to vary in instrumentality (annual pay-for-performance, quarterly pay-for-performance, and base pay level) and employee outcomes (self-reported work effort and turnover intention) in a longitudinal study spanning more than 2 years. After controlling for perceived instrumentality, merit pay increase, and the initial values of the dependent variables, the amount of base pay was positively related to work effort and negatively related to turnover intention, where both relationships were mediated by autonomous motivation. The amounts of quarterly and annual pay-for-performance were both positively related to controlled motivation, but were differently related to the dependent variables due to different relations with autonomous motivation
Systems Biology by the Rules: Hybrid Intelligent Systems for Pathway Modeling and Discovery
Background: Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication.
Results: A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet.
Conclusion: This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue growth, are seamlessly integrated. A number of common network motifs are examined and used to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer
- …
