65 research outputs found

    Abundant Refractory Sulfur in Protoplanetary Disks

    Get PDF
    Sulfur is one of the most abundant elements in the Universe, with important roles in astro-, geo-, and biochemistry. Its main reservoirs in planet-forming disks have previously eluded detection: gaseous molecules only account for <1 <1\,\% of total elemental sulfur, with the rest likely in either ices or refractory minerals. Mechanisms such as giant planets can filter out dust from gas accreting onto disk-hosting stars. For stars above 1.4 solar masses, this leaves a chemical signature on the stellar photosphere that can be used to determine the fraction of each element that is locked in dust. Here, we present an application of this method to sulfur, zinc, and sodium. We analyse the accretion-contaminated photospheres of a sample of young stars and find (89±8) (89\pm8)\,\% of elemental sulfur is in refractory form in their disks. The main carrier is much more refractory than water ice, consistent with sulfide minerals such as FeS

    Ages for exoplanet host stars

    Full text link
    Age is an important characteristic of a planetary system, but also one that is difficult to determine. Assuming that the host star and the planets are formed at the same time, the challenge is to determine the stellar age. Asteroseismology provides precise age determination, but in many cases the required detailed pulsation observations are not available. Here we concentrate on other techniques, which may have broader applicability but also serious limitations. Further development of this area requires improvements in our understanding of the evolution of stars and their age-dependent characteristics, combined with observations that allow reliable calibration of the various techniques.Comment: To appear in "Handbook of Exoplanets", eds. Deeg, H.J. & Belmonte, J.A, Springer (2018

    Estimating magnetic filling factors from Zeeman-Doppler magnetograms

    Get PDF
    This is the author accepted manuscript. The final version is available from American Astronomical Society via the DOI in this record.Low-mass stars are known to have magnetic fields that are believed to be of dynamo origin. Two complementary techniques are principally used to characterise them. Zeeman-Doppler imaging (ZDI) can determine the geometry of the large-scale magnetic field while Zeeman broadening can assess the total unsigned flux including that associated with small-scale structures such as spots. In this work, we study a sample of stars that have been previously mapped with ZDI. We show that the average unsigned magnetic flux follows an activity-rotation relation separating into saturated and unsaturated regimes. We also compare the average photospheric magnetic flux recovered by ZDI, hBV i, with that recovered by Zeeman broadening studies, hBI i. In line with previous studies, hBV i ranges from a few % to ∌20% of hBI i. We show that a power law relationship between hBV i and hBI i exists and that ZDI recovers a larger fraction of the magnetic flux in more active stars. Using this relation, we improve on previous attempts to estimate filling factors, i.e. the fraction of the stellar surface covered with magnetic field, for stars mapped only with ZDI. Our estimated filling factors follow the well-known activity-rotation relation which is in agreement with filling factors obtained directly from Zeeman broadening studies. We discuss the possible implications of these results for flux tube expansion above the stellar surface and stellar wind models.European CommissionAustrian Space Application Programm

    The magnetic field and multiple planets of the young dwarf AU~Mic

    Full text link
    In this paper we present an analysis of near-infrared spectropolarimetric and velocimetric data of the young M dwarf AU Mic, collected with SPIRou at the Canada-France-Hawaii telescope from 2019 to 2022, mostly within the SPIRou Legacy Survey. With these data, we study the large- and small-scale magnetic field of AU Mic, detected through the unpolarized and circularly-polarized Zeeman signatures of spectral lines. We find that both are modulated with the stellar rotation period (4.86 d), and evolve on a timescale of months under differential rotation and intrinsic variability. The small-scale field, estimated from the broadening of spectral lines, reaches 2.61±0.052.61\pm0.05 kG. The large-scale field, inferred with Zeeman-Doppler imaging from Least-Squares Deconvolved profiles of circularly-polarized and unpolarized spectral lines, is mostly poloidal and axisymmetric, with an average intensity of 550±30550\pm30 G. We also find that surface differential rotation, as derived from the large-scale field, is ≃\simeq30% weaker than that of the Sun. We detect the radial velocity (RV) signatures of transiting planets b and c, although dwarfed by activity, and put an upper limit on that of candidate planet d, putatively causing the transit-timing variations of b and c. We also report the detection of the RV signature of a new candidate planet (e) orbiting further out with a period of 33.39±0.1033.39\pm0.10 d, i.e., near the 4:1 resonance with b. The RV signature of e is detected at 6.5σ\sigma while those of b and c show up at ≃\simeq4σ\sigma, yielding masses of 10.2−2.7+3.910.2^{+3.9}_{-2.7} and 14.2−3.5+4.814.2^{+4.8}_{-3.5} Earth masses for b and c, and a minimum mass of 35.2−5.4+6.735.2^{+6.7}_{-5.4} Earth masses for e.Comment: MNRAS, in press (20 pages and 12 figures + 9 pages of supplementary material

    Stellar Coronal and Wind Models: Impact on Exoplanets

    Full text link
    Surface magnetism is believed to be the main driver of coronal heating and stellar wind acceleration. Coronae are believed to be formed by plasma confined in closed magnetic coronal loops of the stars, with winds mainly originating in open magnetic field line regions. In this Chapter, we review some basic properties of stellar coronae and winds and present some existing models. In the last part of this Chapter, we discuss the effects of coronal winds on exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief: Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer Reference Work

    Influence of Calendar Period on the Association Between BMI and Coronary Heart Disease: A Meta-Analysis of 31 Cohorts

    Get PDF
    Objective: The association between obesity and coronary heart disease (CHD) may have changed over time, for example due to improved pharmacological treatment of CHD risk factors. This meta-analysis of 31 prospective cohort studies explores the influence of calendar period on CHD risk associated with body mass index (BMI). Design and Methods: The relative risks (RRs) of CHD for a five-BMI-unit increment and BMI categories were pooled by means of random effects models. Meta-regression analysis was used to examine the influence of calendar period (>1985 v 1985) in univariate and multivariate analyses (including mean population age as a covariate). Results: The age, sex, and smoking adjusted RR (95% confidence intervals) of CHD for a five-BMI-unit increment was 1.28(1.22:1.34). For underweight, overweight and obesity, the RRs (compared to normal weight) were 1.11(0.91:1.36), 1.31(1.22:1.41), and 1.78(1.55:2.04), respectively. The univariate analysis indicated 31% (95%CI: 56:0) lower RR of CHD associated with a five-BMI-unit increment and a 51% (95%CI: 78: 14)) lower RR associated with obesity in studies starting after 1985 (n Π15 and 10, respectively) compared to studies starting in or before 1985 (n Π16 and 10). However, in the multivariate analysis, only mean population age was independently associated with the RRs for a five-BMI-unit increment and obesity ( 29(95%CI: 55: 5)) and 31(95%CI: 66:3), respectively) per 10-year increment in mean age). Conclusion: This study provides no consistent evidence for a difference in the association between BMI and CHD by calendar period. The mean population age seems to be the most important factor that modifies the association between the risk of CHD and BMI, in which the RR decreases with increasing age

    Mammography stages of change in middle-aged women with schizophrenia: An exploratory analysis

    Get PDF
    BACKGROUND: Health care providers and educators who seek to create health promotion programs and individualized comprehensive care plans for women with schizophrenia are hindered by the lack of data to guide their efforts. PURPOSE: This study tested the hypothesis that women with schizophrenia adhere to mammography screening guidelines at the same rate as other same-age women. The study also investigated the validity of the Health Belief (HB) and Stages of Change (SOC) models for breast cancer screening among women with schizophrenia. METHODS: Socio-demographic and clinical variables, as well as knowledge, attitudes, and barriers were assessed as a function of stage of change related to breast cancer screening in 46 women with schizophrenia. RESULTS: Women with schizophrenia were statistically less likely to be adherent to the screening recommendations than those without schizophrenia. Some support was found for the validity of the HB and SOC models for breast cancer screening in women with schizophrenia. Women in the Precontemplation stage had significantly higher negative attitude scores compared to Contemplation and Action/Maintenance stages (59.7, 45.7, and 43.2, respectively), and there was a trend for more barriers in the Precontemplation group (4.6, 2.6, 2.7 respectively). CONCLUSION: Given the small sample size, further research on the rates of breast cancer screening in women with schizophrenia is warranted. Nonetheless, these data suggest that providers who care for women with schizophrenia may need to make take additional measures to ensure that this population receives appropriate screening so as to not put them at greater risk for a late-stage diagnosis of breast cancer. Furthermore, these pilot data suggest that HB and SOC theory-based interventions may be valid for increasing mammography rates in women with schizophrenia

    The Early Evolution of Biting–Chewing Performance in Hexapoda

    Get PDF
    Insects show a plethora of different mandible shapes. It was advocated that these mandible shapes are mainly a function of different feeding habits. This hypothesis was tested on a larger sampling of non-holometabolan biting–chewing insects with additional tests to understand the interplay of mandible function, feeding guild, and phylogeny. The results show that at the studied systematic level, variation in mandible biting–chewing effectivity is regulated to a large extent by phylogenetic history and the configuration of the mandible joints rather than the food preference of a given taxon. Additionally, lineages with multiple mandibular joints such as primary wingless hexapods show a wider functional space occupation of mandibular effectivity than dicondylic insects (= silverfish + winged insects) at significantly different evolutionary rates. The evolution and occupation of a comparably narrow functional performance space of dicondylic insects is surprising given the low effectivity values of this food uptake solution. Possible reasons for this relative evolutionary “stasis” are discussed
    • 

    corecore