131 research outputs found

    Polarization Effects On Electronic Excitation Of Molecules By Low-energy Electron Impact: Study On E- -furan Scattering

    Get PDF
    The Schwinger multichannel method is applied to study the influence of polarization effects on the electronic excitation of the furan molecule by low-energy electron impact. We discuss the importance of inclusion of these effects through the comparison of theoretical results for the electronic excitation of the B3 2 state of furan obtained with and without the proper treatment of the polarization of the target. The electron-furan scattering presents two prominent shape resonances in the A2 2 and B2 1 symmetries at around the electronic excitation threshold of the B3 2 state (3.7 eV). At this low-energy, the inclusion of polarization effects in the calculation moves to lower energies the resonances positions obtained either in the close-coupling or in the static-exchange level of approximation. This phenomenon strongly influences the electronic excitation process. The present results show that a simple close-coupling calculation cannot be applied for molecular systems with low-energy electronic excitation thresholds around misplaced resonances. © 2008 The American Physical Society.771Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., (2000) Science, 287, p. 1658. , SCIEAS 0036-8075 10.1126/science.287.5458.1658Sanche, L., (2005) Eur. Phys. J. D, 35, p. 367. , EPJDF6 1434-6060 10.1140/epjd/e2005-00206-6Martin, F., Burrow, P.D., Cai, Z., Cloutier, P., Hunting, D., Sanche, L., (2004) Phys. Rev. Lett., 93, p. 068101. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.068101Zecca, A., Perazzolli, C., Brunger, M.J., (2005) J. Phys. B, 38, p. 2079. , 0022-3700Mozejko, P., Sanche, L., (2005) Radiat. Phys. Chem., 73, p. 77. , RPCHDM 0969-806X 10.1016/j.radphyschem.2004.10.001König, C., Kopyra, J., Bald, I., Illenberger, E., (2006) Phys. Rev. Lett., 97, p. 018105. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.018105Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 244302. , JCPSA6 0021-9606 10.1063/1.2424456Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 074302. , JCPSA6 0021-9606 10.1063/1.2263824Bouchiha, D., Gorfinkiel, J.D., Caron, L.G., Sanche, L., (2006) J. Phys. B, 39, p. 975. , 0022-3700Trevisan, C.S., Orel, A.E., Rescigno, T.N., (2006) J. Phys. B, 39, p. 255. , 0022-3700Colyer, C.J., Vizcaino, V., Sullivan, J.P., Brunger, M.J., Buckman, S.J., (2007) New J. Phys., 9, p. 41. , NJOPFM 1367-2630 10.1088/1367-2630/9/2/041Bettega, M.H.F., Lima, M.A.P., (2007) J. Chem. Phys., 126, p. 194317. , JCPSA6 0021-9606 10.1063/1.2739514Fleig, T., Knecht, S., Hättig, C., (2007) J. Phys. Chem. A, 111, p. 5482. , 1089-5639Modelli, A., Burrow, P.W., (2004) J. Phys. Chem. A, 108, p. 5721. , JPCAFH 1089-5639 10.1021/jp048759aSulzer, P., Ptasinska, S., Zappa, F., Mielewska, B., Milosavljevic, A.R., Scheier, P., Märk, T.D., Illenberger, E., (2006) J. Chem. Phys., 125, p. 044304. , JCPSA6 0021-9606 10.1063/1.2222370Palmer, M.H., Walker, I.C., Ballard, C.C., Guest, M.F., (1995) Chem. Phys., 192, p. 111. , CMPHC2 0301-0104 10.1016/0301-0104(94)00386-OTakatsuka, K., McKoy, V., (1984) Phys. Rev. A, 30, p. 1734. , PLRAAN 1050-2947 10.1103/PhysRevA.30.1734Bettega, M.H.F., Ferreira, L.G., Lima, M.A.P., (1993) Phys. Rev. A, 47, p. 1111. , PLRAAN 1050-2947 10.1103/PhysRevA.47.1111Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2005) J. Phys. B, 38, p. 4363. , 0022-3700Bachelet, G.B., Hamann, D.R., Schlüter, M., (1982) Phys. Rev. B, 26, p. 4199. , PRBMDO 0163-1829 10.1103/PhysRevB.26.4199Bettega, M.H.F., Natalense, A.P.P., Lima, M.A.P., Ferreira, L.G., (1996) Int. J. Quantum Chem., 60, p. 821. , 0020-7608Chaudhuri, P., Varella N. Do, M.T., De Carvalho, C.R.C., Lima, M.A.P., (2004) Phys. Rev. A, 69, p. 042703. , PLRAAN 1050-2947 10.1103/PhysRevA.69.042703Hunt, W.J., Goddard, W.A., (1969) Chem. Phys. Lett., 3, p. 414. , CHPLBC 0009-2614 10.1016/S0009-2614(99)00340-1Wan, J., Meller, J., Hada, M., Ehara, M., Nakatsujia, H., (2000) J. Chem. Phys., 113, p. 7853. , JCPSA6 0021-9606 10.1063/1.1316034Giuliani, A., Hubin-Franskin, M.-J., (2001) Int. J. Mass Spectrom., 205, p. 163. , 1387-3806Allan, M., Bauschlicher, C.W., (1980) J. Chem. Phys., 72, p. 880. , JCPSA6 0021-9606 10.1063/1.439243Winstead, C., McKoy, V., Bettega, M.H.F., (2005) Phys. Rev. A, 72, p. 042721. , PLRAAN 1050-2947 10.1103/PhysRevA.72.04272

    Electron Scattering From Molecules: Applications Of The Schwinger Multichannel Method To E--co And E--c2h 4 Collisions

    Get PDF
    To illustrate our recent efforts to obtain electronic excitation cross sections of molecules by electron impact, we present in this paper results for the X 1Σ a 3Π and A 1Π transitions of CO obtained with the Schwinger multichannel method. Our results are in good agreement with other theoretical calculations, although not so good when compared with experiments. We also discuss the importance of inclusion of polarization effects to obtain electronic excitation cross sections of some molecules through an example using the C2H4 molecule, which has a triplet state with a low-energy threshold. Finally, we present a very simple rule to estimate integral electronic excitation cross sections using the differential cross section (DCS) at 900, which can be useful to experimentalists using apparatus with difficulties to measure the DCS's at angles around 0 and 180 degrees. We show its efficiency for the present electronic excitation of the C2H4 molecule by electron impact. © 2007 IOP Publishing Ltd.881Garscadden, A., (1992) Z. Phys., 24 (2), pp. 97-99Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., (2000) Science, 287 (5458), pp. 1658-1660Da Costa, R.F., Da Paixão, F.J., Map, L., (2004) J. Phys. B: At. Mol. Phys., 37 (6), pp. 129-L135Da Costa, R.F., Da Paixão, F.J., Map, L., (2005) J. Phys. B: At. Mol. Phys., 38 (24), pp. 4363-4378Da Costa, R.F., Map, L., (2006) Int. J. Quantum Chem., 106 (13), pp. 2664-2676Nonum Da Costa, R.F., Map, L., (2007) Phys. Rev., 75, p. 022705Sun, Q., Winstead, C., McKoy, V., Lima, M.A.P., (1992) J. Chem. Phys., 96 (5), pp. 3531-3535Rescigno, T.N., Schneider, B.I., (1992) Phys. Rev., 45 (5), pp. 2894-2902Takatsuka, K., McKoy, V., (1981) Phys. Rev., 24 (5), pp. 2473-2480Takatsuka, K., McKoy, V., (1984) Phys. Rev., 30 (4), pp. 1734-1740Chaudhuri, P., Varella Do, T.M.N., Carvalho, C.R.C., Map, L., (2004) Nucl. Instrum. Methods Phys. Res., 221, pp. 69-75Chaudhuri, P., Varella Do, T.M.N., Carvalho, C.R.C., Map, L., (2004) Phys. Rev., 69, p. 042703Lane, N.F., (1980) Rev. Mod. Phys., 52 (1), pp. 29-119Sun, Q.Y., Winstead, C., McKoy, V., (1992) Phys. Rev., 46 (11), pp. 6987-6994Morgan, L.A., Tennyson, J., (1993) J. Phys. B: At. Mol. Opt. Phys., 26 (15), pp. 2429-2441Lee, M.-T., MacHado, A.M., Fujimoto, M.M., MacHado, L.E., Brescansin, L.M., (1996) J. Phys. B: At. Mol. Opt. Phys., 29 (18), pp. 4285-4301Furlong, J.M., Newell, W.R., (1996) J. Phys. B: At. Mol. Opt. Phys., 29 (2), pp. 331-338Leclair, L.R., Trajmar, S., (1996) J. Phys. B: At. Mol. Opt. Phys., 29 (22), pp. 5543-5566Zetner, P.W., Kanik, I., Trajmar, S., (1998) J. Phys. B: At. Mol. Opt. Phys., 31 (10), pp. 2395-2413Trajmar, S., Szabo, A., Ostlund, N.S., (1989) Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, pp. 194-197Da Costa, R.F., Bettega, M.H.F., Lima, M.A.P., Van Veen, E.H., (1976) Chem. Phys. Lett., 41 (3), p. 540Asmis, K.R., Allan, M., (1997) J. Chem. Phys., 106 (17), pp. 7044-7046Da Costa, R.F., Bettega, M.H.F., Lima, M.A.P., Da Costa, R.F., Bettega, M.H.F., Lima, M.A.P.

    Electronic Excitation Of The Lb2 State Of Furan By Electron Impact

    Get PDF
    We report on recent results obtained in studies involving electronically inelastic electron scattering from furan. In particular, we considered the electronic transition from ground state to the 1B2 excited state. The scattering calculations employed the Schwinger multichannel method implemented with pseudopotentials and were carried out up to a nine-state close-coupling plus polarization level of approximation.388PART 1Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., (2000) Science, 287 (5458), p. 1658. , 10.1126/science.287.5458.1658 0036-8075Pan, X., Cloutier, P., Hunting, D., Sanche, L., (2003) Phys. Rev. Lett., 90 (20), p. 208102. , 10.1103/PhysRevLett.90.208102 0031-9007Huels, M.A., Boudaïffa, B., Cloutier, P., Hunting, D., Sanche, L., (2003) J. Am. Chem. Soc., 125 (15), p. 4467. , 10.1021/ja029527x 0002-7863Martin, F., Burrow, P.D., Cai, Z., Cloutier, P., Hunting, D., Sanche, L., (2004) Phys. Rev. Lett., 93 (6), p. 068101. , 10.1103/PhysRevLett.93.068101 0031-9007Sanche, L., (2005) Eur. Phys. J., 35 (2), p. 367. , 10.1140/epjd/e2005-00206-6 1434-6060 DFlicker, W.M., Mosher, O.A., Kuppermann, A., (1975) J. Chem. Phys., 64 (4), p. 1315. , 10.1063/1.432397 0021-9606Van Veen, E.H., (1976) Chem. Phys. Lett., 41 (3), p. 535. , 10.1016/0009-2614(76)85411-5 0009-2614Giuliani, A., Hubin-Franskin, M.J., (2001) Int. J. Mass Spectrom., 205 (1-3), p. 163. , 10.1016/S1387-3806(00)00318-3 1387-3806Motte-Tollet, F., Eustatiu, G., Roy, D., (1996) J. Chem. Phys., 105 (17), p. 7448. , 10.1063/1.472572 0021-9606Modelli, A., Burrow, P.D., (2004) J. Phys. Chem., 108 (26), p. 5721. , 10.1021/jp048759a 1089-5639 AMuftakhof, M.V., Mazunov, V.A., Khvostenko, V.I., (1990) Russian Chem. Bulletin, 39 (4), p. 831. , 10.1007/BF00960360 0568-5230Khvostenko, V.I., Vorob'Yov, A.S., Khvostenko, O.G., (1990) J. Phys. B: At. Mol. Opt. Phys., 23 (12), p. 1975. , 10.1088/0953-4075/23/12/008 0953-4075Muftakhof, M.V., Asfandiarov, N.L., Khvostenko, V.I., (1994) J. Electron Spectrosc. Relat. Phenom., 69 (2), p. 165. , 10.1016/0368-2048(94)02047-4 0368-2048Muftakhof, M.V., Mazunov, V.A., Takhistov, V.V., (1994) Russian Chem. Bulletin, 43 (6), p. 988. , 10.1007/BF01558063 1066-5285Dampc, M., Zubek, M., (2008) Int. J. Mass Spectrom., 277 (1-3), p. 52. , 10.1016/j.ijms.2008.04.010 1387-3806Sulzer, P., Ptasinska, S., Zappa, F., Mielewska, B., Milosavljevic, A.R., Scheier, P., Märk, T.D., Illenberger, E., (2006) J. Chem. Phys., 125 (4), p. 044304. , 10.1063/1.2222370 0021-9606Szmytkowski, C., Mozejko, P., Ptasinska-Denga, E., Sabisz, A., (2010) Phys. Rev., 82 (3), p. 032701. , 10.1103/PhysRevA.82.032701 1050-2947 ABettega, M.H.F., Lima, M.A.P., (2007) J. Chem. Phys., 126 (19), p. 194317. , 10.1063/1.2739514 0021-9606Khakoo, M.A., Muse, J., Ralphs, K., Da Costa, R.F., Bettega, M.H.F., Lima, M.A.P., (2010) Phys. Rev., 81 (6), p. 062716. , 10.1103/PhysRevA.81.062716 1050-2947 ADa Costa, R.F., Bettega, M.H.F., Lima, M.A.P., (2008) Phys. Rev., 77 (1), p. 012717. , 10.1103/PhysRevA.77.012717 1050-2947 ATakatsuka, K., McKoy, V., (1981) Phys. Rev., 24, p. 2437. , 0556-2791 ATakatsuka, K., McKoy, V., (1984) Phys. Rev., 30 (4), p. 1734. , 10.1103/PhysRevA.30.1734 0556-2791 ABettega, M.H.F., Ferreira, L.G., Lima, M.A.P., (1993) Phys. Rev., 47 (2), p. 1111. , 10.1103/PhysRevA.47.1111 1050-2947 A(1998) CRC Handbook of Chemistry and Physics, , 79th ed. ed Lide D R (Boca Raton: CRC)Bettega, M.H.F., Natalense, A.P.P., Lima, M.A.P., Ferreira, L.G., (1996) Int. J. Quantum Chem., 60 (4), p. 821. , 10.1002/(SICI)1097-461X(1996)60:43.0.CO;2-Z 0020-7608Dunning Jr., T.H., (1970) J. Chem. Phys., 53 (7), p. 2823. , 10.1063/1.1674408 0021-9606Bauschlicher, C.W., (1980) J. Chem. Phys., 72 (2), p. 880. , 10.1063/1.439243 0021-9606Winstead, C., McKoy, V., (1998) Phys. Rev., 57 (5), p. 3589. , 10.1103/PhysRevA.57.3589 1050-2947 AWinstead, C., McKoy, V., Bettega, M.H.F., (2005) Phys. Rev., 72 (4), p. 042721. , 10.1103/PhysRevA.72.042721 1050-2947 AChaudhuri, P., Varella, M.T.N., Carvalho, C.R.C., Lima, M.A.P., (2004) Nucl. Instrum. Methods Phys. Res., 221, p. 69. , 10.1016/j.nimb.2004.03.033 0168-583X BDa Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2005) J. Phys. B: At. Mol. Phys., 38 (24), p. 4363. , 0953-4075 003Communication, P., Fact, the Study Related with the Electronic Excitation of the 3B2 and 3A1 Excited States of Furan by Electron Impact Has Been Developed in A Collaborative Project Involving Several Groups from Brazil and One Group in the US

    Electron Collisions With α-d -glucose And Β-d -glucose Monomers

    Get PDF
    The development of new alternative routes for production of second generation ethanol from sugarcane biomass poses a challenge to the scientific community. Current research in this field addresses the use of a plasma-based pretreatment of the lignocellulosic raw material. With the aim to provide a theoretical background for this experimental technique we investigate the role of low-energy electrons from the plasma in the rupture of the matrix of cellulosic chains. In this paper, we report calculated cross sections for elastic scattering of low-energy electrons by the α - and Β-D -glucose monomers. The calculations employed the Schwinger multichannel method with pseudopotentials and were carried out at the static-exchange and static-exchange plus polarization levels of approximation. Through the comparison of the results obtained with inclusion of polarization effects we discuss the influence of the different conformations of the hydroxyl group linked to the anomeric carbon on the resonance spectra of these molecules. Resonant structures appearing at different energies for α - and Β -glucose at the low-energy regime of impact energies can be understood as a fingerprint of an "isomeric effect" and suggest that distinct fragmentation mechanisms proceeding via σ* shape resonances may become operative depending on the glucose anomer under consideration. For energies above 15 eV the integral elastic cross sections are very similar for both monomers. Differential cross sections for the glucopyranose anomers considered in this work are typically dominated by a strong forward scattering due to the molecules' large electric dipole moments and, for energies close to the resonances' positions, they display particular features at the intermediate angular region, notably a pronounced f -wave scattering pattern, that are probably associated with the presence of those structures. © 2010 American Institute of Physics.13212Leite, R.C.D., Leal, M.R.L.V., Cortez, L.A.B., Griffin, W.M., Scandiffio, M.I.G., (2009) Energy, 34, p. 655. , ENEYDS 0360-5442,. 10.1016/j.energy.2008.11.001Amorim, J., Corr̂a, J.A.S., Oliveira, C.A., (2008), Patent No. 018080043419 (10 July)Oliveira, C., Souza Corr̂a, J.A., Gomes, M.P., Sismanoglu, B.N., Amorim, J., (2008) Appl. Phys. Lett., 93, p. 041503. , APPLAB 0003-6951,. 10.1063/1.2967016Garscadden, A., (1992) Z. Phys. D: At., Mol. Clusters, 24, p. 97. , ZDACE2 0178-7683,. 10.1007/BF01426692Huo, W.M., Kim, Y.K., (1999) IEEE Trans. Plasma Sci., 27, p. 1225. , ITPSBD 0093-3813,. 10.1109/27.799798Christophorou, L.G., Olthoff, J.K., (2002) Appl. Surf. Sci., 192, p. 309. , ASUSEE 0169-4332,. 10.1016/S0169-4332(02)00033-8Boudaffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., Sanche, L., Huels, M.A., Sanche, L., (2000) Science, 287, p. 1658. , See, for example, SCIEAS 0036-8075, () 10.1126/science.287.5458.1658;, Eur. Phys. J. D EPJDF6 1434-6060 35, 367 (2005) 10.1140/epjd/e2005-00206-6;, J. Am. Chem. Soc. JACSAT 0002-7863 125, 4467 (2003) 10.1021/ja029527x;, Phys. Rev. Lett. PRLTAO 0031-9007 93, 068101 (2004) (and references therein). 10.1103/PhysRevLett.93.068101Mozejko, P., Sanche, L., (2005) Radiat. Phys. Chem., 73, p. 77. , RPCHDM 0969-806X,. 10.1016/j.radphyschem.2004.10.001König, C., Kopyra, J., Bald, I., Illenberger, E., (2006) Phys. Rev. Lett., 97, p. 018105. , PRLTAO 0031-9007,. 10.1103/PhysRevLett.97.018105Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 244302. , JCPSA6 0021-9606,. 10.1063/1.2424456Winstead, C., McKoy, V., (2006) J. Chem. Phys., 125, p. 074302. , JCPSA6 0021-9606,. 10.1063/1.2263824Bouchiha, D., Gorfinkiel, J.D., Caron, L.G., Sanche, L., (2006) J. Phys. B, 39, p. 975. , JPAPEH 0953-4075,. 10.1088/0953-4075/39/4/021Trevisan, C.S., Orel, A.E., Rescigno, T.N., (2006) J. Phys. B, 39, p. 255. , JPAPEH 0953-4075,. 10.1088/0953-4075/39/12/L01Colyer, C.J., Vizcaino, V., Sullivan, J.P., Brunger, M.J., Buckman, S.J., (2007) N. J. Phys., 9, p. 41. , 10.1088/1367-2630/9/2/041 1367-2630Bettega, M.H.F., Lima, M.A.P., (2007) J. Chem. Phys., 126, p. 194317. , JCPSA6 0021-9606,. 10.1063/1.2739514Fleig, T., Knecht, S., Hättig, C., (2007) J. Phys. Chem. A, 111, p. 5482. , See, for instance, JPCAFH 1089-5639, () (and references therein). 10.1021/jp0669409Modelli, A., Burrow, P.W., (2004) J. Phys. Chem. A, 108, p. 5721. , JPCAFH 1089-5639,. 10.1021/jp048759aSulzer, P., Ptasinska, S., Zappa, F., Mielewska, B., Milosavljevic, A.R., Scheier, P., Märk, T.D., Illenberger, E., (2006) J. Chem. Phys., 125, p. 044304. , JCPSA6 0021-9606,. 10.1063/1.2222370Gu, J., Xie, Y., Iii, F.S.H., (2005) J. Am. Chem. Soc., 127, p. 1053. , JACSAT 0002-7863,. 10.1021/ja0400990Berdys, J., Skurski, P., Simons, J., (2004) J. Phys. Chem. B, 108, p. 5800. , JPCBFK 1089-5647,. 10.1021/jp049728iRescigno, T.N., Trevisan, C.S., Orel, A.E., (2006) Phys. Rev. Lett., 96, p. 213201. , PRLTAO 0031-9007,. 10.1103/PhysRevLett.96.213201Scheer, A.M., Mozejko, P., Gallup, G.A., Burrow, P.D., (2007) J. Chem. Phys., 126, p. 174301. , JCPSA6 0021-9606,. 10.1063/1.2727460Gallup, G.A., Burrow, P.D., Fabrikant, I.I., (2009) Phys. Rev. A, 79, p. 042701. , PLRAAN 1050-2947,. 10.1103/PhysRevA.79.042701Gallup, G.A., Burrow, P.D., Fabrikant, I.I., (2009) Phys. Rev. A, 80, p. 046702. , PLRAAN 1050-2947,. 10.1103/PhysRevA.80.046702Rescigno, T.N., Trevisan, C.S., Orel, A.E., (2009) Phys. Rev. A, 80, p. 046701. , PLRAAN 1050-2947,. 10.1103/PhysRevA.80.046701Skalick, T., Allan, M., (2004) J. Phys. B, 37, p. 4849. , JPAPEH 0953-4075,. 10.1088/0953-4075/37/24/010Ibnescu, B.C., May, O., Monney, A., Allan, M., (2007) Phys. Chem. Chem. Phys., 9, p. 3163. , PPCPFQ 1463-9076,. 10.1039/b704656aTakatsuka, K., McKoy, V., Takatsuka, K., McKoy, V., (1981) Phys. Rev. A, 24, p. 2473. , PLRAAN 1050-2947, () 10.1103/PhysRevA.24.2473;, Phys. Rev. A PLRAAN 1050-2947 30, 1734 (1984). 10.1103/PhysRevA.30.1734Bettega, M.H.F., Ferreira, L.G., Lima, M.A.P., (1993) Phys. Rev. A, 47, p. 1111. , PLRAAN 1050-2947,. 10.1103/PhysRevA.47.1111Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2004) J. Phys. B, 37, p. 129. , JPAPEH 0953-4075, () 10.1088/0953-4075/37/6/L03;, J. Phys. B JPAPEH 0953-4075 38, 4363 (2005). 10.1088/0953-4075/38/24/003Chaudhuri, P., Varella, M.T.D.N., Carvalho, C.R.C., Lima, M.A.P., Chaudhuri, P., Varella, M.T.D.N., Carvalho, C.R.C., Lima, M.A.P., (2004) Nucl. Instrum. Methods Phys. Res. B, 221, p. 69. , NIMBEU 0168-583X, () 10.1016/j.nimb.2004.03.033;, Phys. Rev. A PLRAAN 1050-2947 69, 042703 (2004). 10.1103/PhysRevA.69.042703Da Costa, R.F., Bettega, M.H.F., Lima, M.A.P., (2008) Phys. Rev. A, 77, p. 012717. , PLRAAN 1050-2947,. 10.1103/PhysRevA.77.012717Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., (1993) J. Comput. Chem., 14, p. 1347. , JCCHDD 0192-8651,. 10.1002/jcc.540141112Cramer, C.J., Truhlar, D.G., (1993) J. Am. Chem. Soc., 115, p. 5745. , JACSAT 0002-7863,. 10.1021/ja00066a046Corchado, J.C., Sánchez, M.L., Aguilar, M.A., (2004) J. Am. Chem. Soc., 126, p. 7311. , JACSAT 0002-7863,. 10.1021/ja0398767Bachelet, G.B., Hamann, D.R., Schlüter, M., (1982) Phys. Rev. B, 26, p. 4199. , PRBMDO 0163-1829,. 10.1103/PhysRevB.26.4199Bettega, M.H.F., Natalense, A.P.P., Lima, M.A.P., Ferreira, L.G., (1996) Int. J. Quantum Chem., 60, p. 821. , IJQCB2 0020-7608,. 10.1002/(SICI)1097-461X(1996)60:43.0.CO;2-ZWinstead, C., McKoy, V., Winstead, C., McKoy, V., Bettega, M.H.F., (1998) Phys. Rev. A, 57, p. 3589. , PLRAAN 1050-2947, () 10.1103/PhysRevA.57.3589;, Phys. Rev. A PLRAAN 1050-2947 72, 042721 (2005). 10.1103/PhysRevA.72.042721Bettega, M.H.F., Winstead, C., McKoy, V., (2006) Phys. Rev. A, 74, p. 022711. , PLRAAN 1050-2947,. 10.1103/PhysRevA.74.022711Bauschlicher, C.W., (1980) J. Chem. Phys., 72, p. 880. , JCPSA6 0021-9606,. 10.1063/1.439243Bettega, M.H.F., Da Costa, R.F., Lima, M.A.P., (2008) Phys. Rev. A, 77, p. 052706. , PLRAAN 1050-2947,. 10.1103/PhysRevA.77.052706Khakoo, M.A., Blumer, J., Keane, K., Campbell, C., Silva, H., Lopes, M.C.A., Winstead, C., Bettega, M.H.F., (2008) Phys. Rev. A, 77, p. 042705. , PLRAAN 1050-2947,. 10.1103/PhysRevA.77.04270

    Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Get PDF
    8 págs.; 2 figs.; 2 tabs.We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.D.B.J. thanks the Australian Research Council (ARC) for financial support provided through a Discovery Early Career Research Award, while M.J.B. also thanks the ARC for their support. M.J.B. acknowledges the Brazilian agency CNPq for his “Special Visiting Professor” position at the Federal University of Juiz de Fora. G.G. acknowledges partial financial support from the Spanish Ministry MINECO (Project No. FIS2012-31230) and the European Union COST Action No. CM1301 (CELINA). Finally R.F.C., M.T.doN.V, M.H.F.B, and M.A.P.L. also acknowledge support from CNPq, while M.T.doN.V. thanks FAPESPPeer Reviewe

    Theoretical and experimental differential cross sections for electron impact excitation of the electronic bands of furfural

    Get PDF
    13 págs.; 8 figs.; 6 tabs.We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (CHO). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of CHO. The measurements were carried out at energies in the range 20-40 eV, and for scattered-electron angles between 10°and 90°. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6-50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail. ©2016 AIP Publishing LLCR.F.C.N. thanks CNPq (Brazil) and the Science Without Borders Programme for opportunities to study abroad. D.B.J. thanks the Australian Research Council (ARC) for financial support provided through a Discovery Early Career Research Award, while M.J.B. also thanks the ARC for their support. M.J.B. and M.C.A.L. acknowledge the Brazilian agencies CNPq and FAPEMIG. P.L.-V. acknowledges the Portuguese Foundation for Science and Technology (FCTMEC) through Grant Nos. PTDC/FIS-ATO/1832/2012 and UIO/FIS/00068/2013. G.G. acknowledges partial financial support from the Spanish Ministry MINECO (Project No. FIS2012-31230) and the European Union COST Action No. CM1301 (CELINA). Finally, R.F.d.C., M.T.d.N.V., M.H.F.B., and M.A.P.L. acknowledge support from the Brazilian agency CNPq and M.T.d.N.V. also thanks FAPESP.Peer Reviewe

    Vascular Flora Of The Legado Das Águas, Reserva Votorantim, Municipalities Of Tapiraí, Miracatú And Juquiá, São Paulo, Brazil

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)We present a list of vascular plants found in Legado das Águas, Reserva Votorantim, a private reserve having an area of approximately 35,000 ha that spans the municipalities of Tapiraí, Miracatú, and Juquiá, in the state of São Paulo, Brazil. The reserve is part of a complex of state-protected areas including Alto Ribeira Touristic State Park, Intervales State Park, Carlos Botelho State Park, Jurupará State Park, and Serra do Mar State Park. Together, these form an important and large area of continuous and well-preserved forest. Our study, which involved two main floristic surveys in March/April 2013 and April 2014, recorded 768 species, representing 131 families and 432 genera. The majority of species were angiosperms (619) representing 106 families and 370 genera. There were also two species of gymnosperms belonging to two genera in separate families; 147 species of ferns and lycophytes belonging to 23 families and 60 genera. In demonstrating the presence of almost 800 species of plants, of which 16 are threatened, our study highlights the importance of floristic surveys and the critical role of private protected areas in managing and preserving native flora. © 2016 Check List and Authors.1262011/22923-8, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo2015/9444-4, FAPESP, Fundação de Amparo à Pesquisa do Estado de São PauloFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    A home and ambulatory artificial nutrition (NADYA) group report, home parenteral nutrition in Spain, 2013

    Get PDF
    Aim: to communicate the results of the Spanish Home Parenteral Nutrition (HPN) registry of the NADYA-SENPE group for the year 2013. Material and methods: data was recorded online by NADYA group collaborators that were responsible of the HPN follow-up from 1st January to 31st December 2013. Results: a total of 197 patients and 202 episodes of HPN were registered from 35 hospitals that represents a rate of 4,22 patients/million habitants/year 2013. The median age was 53 years (IQR 40 – 64) for 189 adult patients and 7 months (IQR 6 – 35,5) for children. The most frequent disease in adults was neoplasm (30,7%) followed by other diseases (20,1%) and mesenteric ischemia (12,7%). Short bowel syndrome and intestinal obstruction (25,9%) were in 35.7% cases the indications for HPN
    corecore